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It is the purpose of this document to familiarize the reader with a wide range of theorems
and techniques that can be used to solve inequalities of the variety typically appearing on
mathematical olympiads or other elementary proof contests. The Standard Dozen is an
exhibition of twelve famous inequalities which can be cited and applied without proof in
a solution. It is expected that most problems will fall entirely within the span of these
inequalities. The Examples section provides numerous complete solutions as well as remarks
on inequality-solving intuition, all intended to increase the reader’s aptitude for the material
covered here. It is organized in rough order of difficulty. Finally, the Problems section
contains exercises without solutions, ranging from easy and straightforward to quite difficult,
for the purpose of practicing techniques contained in this document.

I have compiled much of this from posts by my peers in a number of mathematical
communities, particularly the Mathlinks-Art of Problem Solving forums,1 as well as from
various MOP lectures,2 Kiran Kedlaya’s inequalities packet,3 and John Scholes’ site.4 I have
tried to take note of original sources where possible. This work in progress is distributed for
personal educational use only. In particular, any publication of all or part of this manuscript
without explicit prior consent of the author, as well as any original sources noted herein, is
strictly prohibited. Please send comments - suggestions, corrections, missing information, or
other interesting problems - to the author at tmildorfATmitDOTedu.

Without further delay...

1http://www.mathlinks.ro/Forum/ and http://www.artofproblemsolving.com respectively, though they
have merged into a single, very large and robust group. The forums there are also host to a considerable
wealth of additional material outside of inequalities.

2Math Olympiad Program. Although some people would try to convince me it is the Math Olympiad
Summer Program and therefore is due the acronym MOSP, those who know acknowledge that the traditional
“MOP” is the preferred appellation.

3The particularly diligent student of inequalities would be interested in this document, which is available
online at http://www.unl.edu/amc/a-activities/a4-for-students/problemtext/ineqs-080299.tex. Further ma-
terial is also available in the books Andreescu-Cirtoaje-Dospinescu-Lascu, Old and New Inequalities, GIL
Publishing House, and Hardy-Littlewood-Pólya, Inequalities, Cambridge University Press. (The former is
elementary and geared towards contests, the latter is more technical.)

4http://www.kalva.demon.co.uk/, where a seemingly inexhaustible supply of Olympiads is available.
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1 The Standard Dozen

Throughout this lecture, we refer to convex and concave functions. Write I and I ′ for the
intervals [a, b] and (a, b) respectively. A function f is said to be convex on I if and only if
λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y) for all x, y ∈ I and 0 ≤ λ ≤ 1. Conversely, if the
inequality always holds in the opposite direction, the function is said to be concave on the
interval. A function f that is continuous on I and twice differentiable on I ′ is convex on I
if and only if f ′′(x) ≥ 0 for all x ∈ I (Concave if the inequality is flipped.)

Let x1 ≥ x2 ≥ · · · ≥ xn; y1 ≥ y2 ≥ · · · ≥ yn be two sequences of real numbers. If
x1 + · · ·+xk ≥ y1 + · · ·+ yk for k = 1, 2, . . . , n with equality where k = n, then the sequence
{xi} is said to majorize the sequence {yi}. An equivalent criterion is that for all real numbers
t,

|t− x1|+ |t− x2|+ · · ·+ |t− xn| ≥ |t− y1|+ |t− y2|+ · · ·+ |t− yn|
We use these definitions to introduce some famous inequalities.

Theorem 1 (Jensen) Let f : I → R be a convex function. Then for any x1, . . . , xn ∈ I
and any nonnegative reals ω1, . . . , ωn with positive sum,

ω1f(x1) + · · ·+ ωnf(xn) ≥ (ω1 + · · ·+ ωn) f

(
ω1x1 + · · ·+ ωnxn

ω1 + · · ·+ ωn

)

If f is concave, then the inequality is flipped.

Theorem 2 (Weighted Power Mean) If x1, . . . , xn are nonnegative reals and ω1, . . . , ωn

are nonnegative reals with a postive sum, then

f(r) :=

(
ω1x

r
1 + · · ·+ ωnx

r
n

ω1 + · · ·+ ωn

) 1
r

is a non-decreasing function of r, with the convention that r = 0 is the weighted geometric
mean. f is strictly increasing unless all the xi are equal except possibly for r ∈ (−∞, 0],
where if some xi is zero f is identically 0. In particular, f(1) ≥ f(0) ≥ f(−1) gives the
AM-GM-HM inequality.

Theorem 3 (Hölder) Let a1, . . . , an; b1, . . . , bn; · · · ; z1, . . . , zn be sequences of nonnegative
real numbers, and let λa, λb, . . . , λz positive reals which sum to 1. Then

(a1 + · · ·+ an)λa(b1 + · · ·+ bn)λb · · · (z1 + · · ·+ zn)λz ≥ aλa
1 bλb

1 · · · zλz
1 + · · ·+ aλz

n bλb
n · · · zλz

n

This theorem is customarily identified as Cauchy when there are just two sequences.

Theorem 4 (Rearrangement) Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two
nondecreasing sequences of real numbers. Then, for any permutation π of {1, 2, . . . , n}, we
have

a1b1 + a2b2 + · · ·+ anbn ≥ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≥ a1bn + a2bn−1 + · · ·+ anb1

with equality on the left and right holding if and only if the sequence π(1), . . . , π(n) is de-
creasing and increasing respectively.
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Theorem 5 (Chebyshev) Let a1 ≤ a2 ≤ · · · ≤ an; b1 ≤ b2 ≤ · · · ≤ bn be two nondecreas-
ing sequences of real numbers. Then

a1b1 + a2b2 + · · ·+ anbn

n
≥ a1 + a2 + · · ·+ an

n
·b1 + b2 + · · ·+ bn

n
≥ a1bn + a2bn−1 + · · ·+ anb1

n

Theorem 6 (Schur) Let a, b, c be nonnegative reals and r > 0. Then

ar(a− b)(a− c) + br(b− c)(b− a) + cr(c− a)(c− b) ≥ 0

with equality if and only if a = b = c or some two of a, b, c are equal and the other is 0.

Remark - This can be improved considerably. (See the problems section.) However, they
are not as well known (as of now) as this form of Schur, and so should be proven whenever
used on a contest.

Theorem 7 (Newton) Let x1, . . . , xn be nonnegative real numbers. Define the symmetric
polynomials s0, s1, . . . , sn by (x + x1)(x + x2) · · · (x + xn) = snxn + · · ·+ s1x + s0, and define
the symmetric averages by di = si/

(
n
i

)
. Then

d2
i ≥ di+1di−1

Theorem 8 (Maclaurin) Let di be defined as above. Then

d1 ≥
√

d2 ≥ 3
√

d3 ≥ · · · ≥ n
√

dn

Theorem 9 (Majorization) Let f : I → R be a convex on I and suppose that the sequence
x1, . . . , xn majorizes the sequence y1, . . . , yn, where xi, yi ∈ I. Then

f(x1) + · · ·+ f(xn) ≥ f(y1) + · · ·+ f(yn)

Theorem 10 (Popoviciu) Let f : I → R be convex on I, and let x, y, z ∈ I. Then for any
positive reals p, q, r,

pf(x) + qf(y) + rf(z) + (p + q + r)f

(
px + qy + rz

p + q + r

)

≥ (p + q)f

(
px + qy

p + q

)
+ (q + r)f

(
qy + rz

q + r

)
+ (r + p)f

(
rz + px

r + p

)

Theorem 11 (Bernoulli) For all r ≥ 1 and x ≥ −1,

(1 + x)r ≥ 1 + xr
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Theorem 12 (Muirhead) Suppose the sequence a1, . . . , an majorizes the sequence b1, . . . , bn.
Then for any positive reals x1, . . . , xn,

∑
sym

xa1
1 xa2

2 · · · xan
n ≥

∑
sym

xb1
1 xb2

2 · · · xbn
n

where the sums are taken over all permutations of n variables.

Remark - Although Muirhead’s theorem is a named theorem, it is generally not favor-
ably regarded as part of a formal olympiad solution. Essentially, the majorization criterion
guarantees that Muirhead’s inequality can be deduced from a suitable application of AM-GM.
Hence, whenever possible, you should use Muirhead’s inequality only to deduce the correct
relationship and then explicitly write all of the necessary applications of AM-GM. For a
particular case this is a simple matter.

We now present an array of problems and solutions based primarily on these inequalities
and ideas.

2 Examples

When solving any kind of problem, we should always look for a comparatively easy solu-
tion first, and only later try medium or hard approaches. Although what constitutes this
notoriously indeterminate “difficulty” varies widely from person to person, I usually con-
sider “Dumbassing,” AM-GM (Power Mean), Cauchy, Chebyshev (Rearrangement), Jensen,
Hölder, in that order before moving to more clever techniques. (The first technique is de-
scribed in remarks after example 1.) Weak inequalities will fall to AM-GM, which blatantly
pins a sum to its smallest term. Weighted Jensen and Hölder are “smarter” in that the effect
of widely unequal terms does not cost a large degree of sharpness5 - observe what happens
when a weight of 0 appears. Especially sharp inequalities may be assailable only through
clever algebra.

Anyway, I have arranged the following with that in mind.

1. Show that for positive reals a, b, c

(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

) ≥ 9a2b2c2

Solution 1. Simply use AM-GM on the terms within each factor, obtaining

(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

) ≥
(
3

3
√

a3b3c3
)(

3
3
√

a3b3c3
)

= 9a2b2c2

5The sharpness of an inequality generally refers to the extent to which the two sides mimic each other,
particularly near equality cases.

4



Solution 2. Rearrange the terms of each factor and apply Cauchy,

(
a2b + b2c + c2a

) (
bc2 + ca2 + ab2

) ≥
(√

a3b3c3 +
√

a3b3c3 +
√

a3b3c3
)2

= 9a2b2c2

Solution 3. Expand the left hand side, then apply AM-GM, obtaining

(
a2b + b2c + c2a

) (
ab2 + bc2 + ca2

)
= a3b3 + a2b2c2 + a4bc

+ ab4c + b3c3 + a2b2c2

+ a2b2c2 + abc4 + a3c3

≥ 9
9
√

a18b18c18 = 9a2b2c2

We knew this solution existed by Muirhead, since (4, 1, 1), (3, 3, 0), and (2, 2, 2) all
majorize (2, 2, 2). The strategy of multiplying out all polynomial expressions and ap-
plying AM-GM in conjunction with Schur is generally knowing as dumbassing because
it requires only the calculational fortitude to compute polynomial products and no real
ingenuity. As we shall see, dumbassing is a valuable technique. We also remark that
the AM-GM combining all of the terms together was a particularly weak inequality, but
the desired was a multiple of a2b2c2’s, the smallest 6th degree symmetric polynomial
of three variables; such a singular AM-GM may not always suffice.

2. Let a, b, c be positive reals such that abc = 1. Prove that

a + b + c ≤ a2 + b2 + c2

Solution. First, we homogenize the inequality. that is, apply the constraint so as
to make all terms of the same degree. Once an inequality is homogenous in degree
d, we may scale all of the variables by an arbitrary factor of k, causing both sides
of the inequality to scale by the factor kd. This is valid in that it does not change
the correctness of an inequality for any positive k, and if d is even, for any nonzero
k. Hence, we need consider a nonhomogenous constraint no futher. In this case, we
multiply the left hand side by 3

√
abc, obtaining

a
4
3 b

1
3 c

1
3 + a

1
3 b

4
3 c

1
3 + a

1
3 b

1
3 c

4
3 ≤ a2 + b2 + c2

As abc = 1 is not homogenous, the above inequality must be true for all nonnegative
a, b, c. As (2, 0, 0) majorizes (4/3, 1/3, 1/3), we know it is true, and the necessary
AM-GM is

2a2

3
+

b2

6
+

c2

6
=

a2 + a2 + a2 + a2 + b2 + c2

6
≥ 6
√

a8b2c2 = a
4
3 b

1
3 c

1
3

3. Let P (x) be a polynomial with positive coefficients. Prove that if

P

(
1

x

)
≥ 1

P (x)
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holds for x = 1, then it holds for all x > 0.

Solution. Let P (x) = anxn + an−1x
n−1 + · · · + a1x + a0. The first thing we notice is

that the given is P (1) ≥ 1. Hence, the natural strategy is to combine P (x) and P
(

1
x

)
into P (1) in some fashion. The best way to accomplish this is Cauchy, which gives

P (x)P

(
1

x

)
= (anx

n + · · ·+ a1x + a0)

(
an

1

xn
+ · · ·+ a1

1

x
+ a0

)

≥ (an + · · ·+ a1 + a0)
2 = P (1)2 ≥ 1

as desired. This illustrates a useful means of eliminating denominators - by introducing
similar factors weighted by reciprocals and applying Cauchy / Hölder.

4. (USAMO 78/1) a, b, c, d, e are real numbers such that

a + b + c + d + e = 8

a2 + b2 + c2 + d2 + e2 = 16

What is the largest possible value of e?

Solution. Observe that the givens can be effectively combined by considering squares:

(a− r)2 + (b− r)2 + (c− r)2 + (d− r)2 + (e− r)2 = (a2 + b2 + c2 + d2 + e2)

− 2r(a + b + c + d + e) + 5r2

= 16− 16r + 5r2

Since these squares are nonnegative, e ≤ √
5r2 − 16r + 16 + r = f(r) for all r. Since

equality e = f(r) can be achieved when a = b = c = d = r, we need only compute the
smallest value f(r). Since f grows large at either infinity, the minimum occurs when
f ′(r) = 1 + 10r−16

2
√

5r2−16r+16
= 0. The resultant quadratic is easily solved for r = 6

5
and

r = 2, with the latter being an extraneous root introduced by squaring. The largest
possible e and greatest lower bound of f(r) is then f(6/5) = 16/5, which occurs when
a = b = c = d = 6/5 and e = 16/5. Alternatively, proceed as before except write
a = b = c = d = 8−e

4
since the maximum e must occur when the other four variables

are equal. The second condition becomes a quadratic, and the largest solution is seen
to be e = 16

5
.

The notion of equating a, b, c, d is closely related to the idea of smoothing and Jensen’s
inequality. If we are working with S1 = f(x1) + · · · + f(xn) under the constraint of a
fixed sum x1 + · · ·+ xn, we can decrease S1 by moving several xi in the same interval
I together (that is, replacing xi1 < xi2 with x′i1 = xi1 + ε < xi2 − ε = x′i2 for any
sufficiently small ε) for any I where f is convex. S1 can also be decreased by spreading
xi in the same interval where f is concave. When seeking the maximum of S1, we
proceed in the opposite fashion, pushing xi on the concave intervals of f together and
moving xi on the convex intervals apart.
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5. Show that for all positive reals a, b, c, d,

1

a
+

1

b
+

4

c
+

16

d
≥ 64

a + b + c + d

Solution. Upon noticing that the numerators are all squares with
√

1 +
√

1 +
√

4 +√
16 =

√
64, Cauchy should seem a natural choice. Indeed, multiplying through by

a + b + c + d and applying Cauchy, we have

(a + b + c + d)

(
12

a
+

12

b
+

22

c
+

42

d

)
≥ (1 + 1 + 2 + 4)2 = 64

as desired.

6. (USAMO 80/5) Show that for all non-negative reals a, b, c ≤ 1,

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
+ (1− a)(1− b)(1− c) ≤ 1

Solution. Let f(a, b, c) denote the left hand side of the inequality. Since ∂2

∂a2 f =
2b

(c+a+1)3
+ 2c

(a+b+1)3
≥ 0, we have that f is convex in each of the three variables; hence,

the maximum must occur where a, b, c ∈ {0, 1}. Since f is 1 at each of these 8 points,
the inequality follows.

Second derivative testing for convexity/concavity is one of the few places where the
use of Calculus is not seriously loathed by olympiad graders. It is one of the standard
techniques in inequalities and deserves to be in any mental checklist of inequality
solving. In this instance, it led to an easy solution.

7. (USAMO 77/5) If a, b, c, d, e are positive reals bounded by p and q with 0 < p ≤ q,
prove that

(a + b + c + d + e)

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
≤ 25 + 6

(√
p

q
−

√
q

p

)2

and determine when equality holds.

Solution. As a function f of five variables, the left hand side is convex in each of
a, b, c, d, e; hence, its maximum must occur when a, b, c, d, e ∈ {p, q}. When all five
variables are p or all five are q, f is 25. If one is p and the other four are q, or vice
versa, f becomes 17 + 4(p

q
+ q

p
), and when three are of one value and two of the other,

f = 13 + 6(p
q

+ q
p
). p

q
+ q

p
≥ 2, with equality if and only if p = q. Clearly, equality

holds where p = q. Otherwise, the largest value assumed by f is 13 + 6(p
q

+ q
p
), which

is obtained only when two of a, b, c, d, e are p and the other three are q, or vice versa.
In such instances, f is identically the right hand side.

This is a particular case of the Schweitzer inequality, which, in its weighted form, is
sometimes known as the Kantorovich inequality. Again, the proof is hardly difficult.
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8. a, b, c, are non-negative reals such that a + b + c = 1. Prove that

a3 + b3 + c3 + 6abc ≥ 1

4

Solution. Multiplying by 4 and homogenizing, we seek

4a3 + 4b3 + 4c3 + 24abc ≥ (a + b + c)3

= a3 + b3 + c3 + 3
(
a2(b + c) + b2(c + a) + c2(a + b)

)
+ 6abc

⇐⇒ a3 + b3 + c3 + 6abc ≥ a2(b + c) + b2(c + a) + c2(a + b)

Recalling that Schur’s inequality gives a3+b3+c3+3abc ≥ a2(b+c)+b2(c+a)+c2(a+b),
the inequality follows. In particular, equality necessitates that the extra 3abc on the
left is 0. Combined with the equality condition of Schur, we have equality where two
of a, b, c are 1

2
and the third is 0. This is a typical dumbass solution.

Solution 2. Without loss of generality, take a ≥ b ≥ c. As a + b + c = 1, we
have c ≤ 1

3
or 1 − 3c ≥ 0. Write the left hand side as (a + b)3 − 3ab(a + b − 2c) =

(a+b)3−3ab(1−3c). This is minimized for a fixed sum a+b where ab is made as large
as possible. As by AM-GM (a + b)2 ≥ 4ab, this minimum occurs if and only if a = b.

Hence, we need only consider the one variable inequality 2
(

1−c
2

)3
+ c3 + 6

(
1−c
2

)2
c =

1
4
· (9c3 − 9c2 + 3c + 1) ≥ 1

4
. Since c ≤ 1

3
, 3c ≥ 9c2. Dropping this term and 9c3, the

inequality follows. Particularly, 9c3 = 0 if and only if c = 0, and the equality cases are
when two variables are 1

2
and the third is 0. This solution is of the smoothing variety in

that we moved two variables together while preserving their sum. In other inequalities
we may wish to preserve products and thus analyze the assignment a′ = b′ =

√
ab.

These are both representative of the technique of mixing variables, in which two or
more variables are blended together algebraically as part of an argument allowing us
to outright equate variables.

9. (IMO 74/5) If a, b, c, d are positive reals, then determine the possible values of

a

a + b + d
+

b

b + c + a
+

c

b + c + d
+

d

a + c + d

Solution. We can obtain any real value in (1, 2). The lower bound is approached by
a → ∞, b = d =

√
a, and c = 1. The upper bound is approached by a = c → ∞,

b = d = 1. As the expression is a continuous function of the variables, we can obtain
all of the values in between these bounds. Finally, these bounds are strict because

a

a + b + d
+

b

b + c + a
+

c

b + c + d
+

d

a + c + d
>

a

a + b + c + d
+

b

a + b + c + d
+

c

a + b + c + d
+

d

a + b + c + d
= 1
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and

a

a + b + d
+

b

b + c + a
+

c

b + c + d
+

d

a + c + d
<

a

a + b
+

b

a + b
+

c

c + d
+

d

c + d
= 2

Whenever extrema occur for unusual parameterizations, we should expect the need for
non-classical inequalities such as those of this problem where terms were completely
dropped.

10. (IMO 95/2) a, b, c are positive reals with abc = 1. Prove that

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2

Solution 1. Let x = 1
a
, y = 1

b
, and z = 1

c
. We perform this substitution to move terms

out of the denominator. Since abc = xyz = 1, we have

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
=

x2

y + z
+

y2

x + z
+

z2

x + y

Now, multiplying through by (x + y)(y + z)(z + x), we seek

x4 + y4 + z4 + x3y + x3z + y3z + xy3 + xz3 + yz3 + x2yz + xy2z + xyz2 ≥
3
√

xyz ·
(

3xyz +
3

2
· (x2y + x2z + y2x + xy2 + xz2 + yz2

))

which follows immediately by AM-GM, since x2yz+xy2z+xyz2 ≥ 3 3
√

x4y4z4, x3y+xy3+x3z
3

≥
3
√

x7y4z and 7x4+4y4+z4

12
≥ 3

√
x7y4z - as guaranteed by Muirhead’s inequality.

Solution 2. Substitute x, y, z as before. Now, consider the convex function f(x) = x−1

for x > 0. (f(x) = xc is convex for c < 0 and c ≥ 1, and concave for 0 < c ≤ 1, verify
this with the second derivative test.) Now, by Jensen,

x2

y + z
+

y2

z + x
+

z2

x + y
= xf

(
y + z

x

)
+ yf

(
z + x

y

)
+ zf

(
x + y

z

)

≥ (x + y + z)f

(
(y + z) + (z + x) + (x + y)

x + y + z

)
=

x + y + z

2

But x + y + z ≥ 3 3
√

xyz = 3, as desired.

Solution 3. Perform the same substitution. Now, multiplying by (x + y + z) and
applying Cauchy, we have

1

2
((y + z) + (z + x) + (x + y))

(
x2

y + z
+

y2

z + x
+

z2

x + y

)
≥ 1

2
(x + y + z)2
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Upon recalling that x+y+z ≥ 3 we are done. Incidentally, the progress of this solution
with Cauchy is very similar to the weighted Jensen solution shown above. This is no
coincidence, it happens for many convex f(x) = xc.

Solution 4. Apply the same substitution, and put x ≥ y ≥ z. Simultaneously,
x

y+z
≥ y

z+x
≥ z

x+y
. Hence, by Chebyshev,

x ·
(

x

y + z

)
+ y ·

(
y

z + x

)
+ z ·

(
z

x + y

)
≥ x + y + z

3

(
x

y + z
+

y

x + z
+

z

x + y

)

Again, x+ y + z ≥ 3. But now we have Nesbitt’s inequality, x
y+z

+ y
x+z

+ z
x+y

≥ 3
2
. This

follows immediately from AM-HM upon adding 1 to each term. Suffice it to say that
with such a multitude of solutions, this problem was hardly difficult.

11. Let a, b, c be positive reals such that abc = 1. Show that

2

(a + 1)2 + b2 + 1
+

2

(b + 1)2 + c2 + 1
+

2

(c + 1)2 + a2 + 1
≤ 1

Solution. The previous problem showed the substitution offers a way to rewrite an
inequality in a more convenient form. Substitution can also be used to implicity use a
given. First, expand the denominators and apply AM-GM, obtaining

2

(a + 1)2 + b2 + 1
=

2

a2 + b2 + 2a + 2
≤ 1

ab + a + 1

Now, write a = x
y
, b = y

z
, c = z

x
. We have 1

ab+a+1
= 1

x
z
+x

y
+1

= yz
xy+yz+zx

. It is now evident

that the sum of the new fractions is 1.

That positive reals a, b, c have product 1 if and only if 1
1+a+ab

+ 1
1+b+bc

+ 1
1+c+ca

= 1
is a curious and recurring identity. Also to be taken from this problem is the idea
of “isolated fudging.”6 In many inequalities we are content to use Cauchy or Jensen,
which blend n terms in a sum together, but in others it is prudent to restrict our
attention to individual terms.

12. (USAMO 98/3) Let a0, . . . , an be real numbers in the interval (0, π
2
) such that

tan
(
a0 − π

4

)
+ tan

(
a1 − π

4

)
+ · · ·+ tan

(
an − π

4

)
≥ n− 1

Prove that
tan(a0) tan(a1) · · · tan(an) ≥ nn+1

6This term coined at MOP 2005 by Hyun Soo Kim.
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Solution 1. Let yi = tan
(
x− π

4

)
. We have tan(xi) = tan

(
(xi − π

4
) + π

4

)
= yi+1

1−yi
.

Hence, given s = y0 + · · · + yn ≥ n − 1 we seek to prove
∏n

i=0
1+yi

1−yi
≥ nn+1. Observe

that for any a > b under a fixed sum a + b, the expression

(
1 + a

1− a

)
·
(

1 + b

1− b

)
= 1 +

2(a + b)

(1− a)(1− b)

can be decreased by moving a and b any amount closer together. Hence, for any
sequence y0, . . . , yn, we can replace any yi > s

n+1
and yj < s

n+1
with y′i = s

n+1
and

y′j = yi + yj − s
n+1

, decreasing the product. Since n is finite this process terminates
where all of the variables are equal. Thus, we have

n∏
i=0

1 + yi

1− yi

≥
(

1 + s
n+1

1− s
n+1

)n+1

≥
(

2n
n+1

2
n+1

)n+1

= nn+1

Where the last inequality follows from the fact that 1+x
1−x

is an increasing function of x.

Solution 2. Perform the same substitution. The given can be written as 1 + yi ≥∑
j 6=i(1 − yj), which by AM-GM gives 1+yn

n
≥ ∏

j 6=i (1− yj)
1
n . (There are n + 1 vari-

ables.) Now we have

n∏
i=0

1 + yi

n
≥

n∏
i=0

∏

j 6=i

(1− yj)
1
n =

n∏
i=0

(1− yi)

as desired. Our first solution again used the idea of smoothing and was fairly natural,
whereas the second is a bit magical.

13. Let a, b, c be positive reals. Prove that

1

a(1 + b)
+

1

b(1 + c)
+

1

c(1 + a)
≥ 3

1 + abc

with equality if and only if a = b = c = 1.

Solution. Multiply through by 1+abc and add three to each side, on the left obtaining

1 + a + ab + abc

a(1 + b)
+

1 + b + bc + abc

b(1 + c)
+

1 + c + ac + abc

c(1 + a)

=
(1 + a) + ab(1 + c)

a(1 + b)
+

(1 + b) + bc(1 + a)

b(1 + c)
+

(1 + c) + ac(1 + b)

c(1 + a)

which is at least 6 by AM-GM, as desired. In particular, this AM-GM asserts the
equivalence of (1+a)

a(1+b)
and a(1+b)

1+a
, or that they are both one. Then a + ab = 1 + a so

11



ab = 1. It follows easily that a = b = c = 1 is the unique equality case. Here, we
used algebra to connect the 1 and abc by adding a term of first degree and a term of
second degree to each numerator. Dumbassing is made nontrivial due to the asymmetry
involved, so we put clearing all denominators on hold. Multiplying by only the 1 + abc
term was reasonably well-motivated, however, because it is unclear how one will blend
the denominators on the left to obtain this factor.

14. (Romanian TST) Let a, b, x, y, z be positive reals. Show that

x

ay + bz
+

y

az + bx
+

z

ax + by
≥ 3

a + b

Solution. Note that (a + b)(xy + yz + xz) = (x(ay + bz) + y(az + bx) + z(ax + by)).
We introduce this factor in the inequality, obtaining

(x(ay + bz) + y(az + bx) + z(ax + by))

(
x

ay + bz
+

y

az + bx
+

z

ax + by

)
≥

(x + y + z)2 ≥ 3(xy + yz + xz)

Where the last inequality is simple AM-GM. The desired follows by simple algebra.
Again we have used the idea of introducing a convenient factor to clear denominators
with Cauchy.

15. The numbers x1, x2, . . . , xn obey −1 ≤ x1, x2, . . . , xn ≤ 1 and x 3
1 + x 3

2 + · · ·+ x 3
n = 0.

Prove that
x1 + x2 + · · ·+ xn ≤ n

3

Solution 1. Substitute yi = x3
i so that y1 + · · · + yn = 0. In maximizing 3

√
y1 +

· · · + 3
√

yn, we note that f(y) = y
1
3 is concave over [0, 1] and convex over [−1, 0], with

|f ′(y1)| ≥ |f ′(y2)| ⇐⇒ 0 < |y1| ≤ |y2|. Hence, we may put y1 = · · · = yk = −1;

−1 ≤ yk+1 < 0, and yk+2 = · · · = yn = k−yk+1

n−k−1
. We first show that yk+1 leads to

a maximal sum of 3
√

yi if it is -1 or can be made positive. If |yk+1| < |yk+2|, we set

y′k+1 = y′k+2 = yk+1+yk+2

2
, increasing the sum while making yk+1 positive. Otherwise,

set y′k+1 = −1 and y′k+2 = 1− yk+1 − yk+2, again increasing the sum of the 3
√

yi. Now
we may apply Jensen to equate all positive variables, so that we need only show

k 3
√−1 + (n− k) 3

√
k

n− k
≤ n

3

But we have

(n + 3k)3 − 27(n− k)2k = n3 − 18n2k + 81nk2 = n(n− 9k)2 ≥ 0

as desired. Particularly, as k is an integer, equality can hold only if 9|n and then if
and only if one ninth of the variables yi are -1 and the rest are 1/8.
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Solution 2. Let xi = sin(αi), and write 0 = x3
1 + · · ·+x3

n = sin3(α1)+ · · ·+sin3(αn) =
1
4
((3 sin(α1)− sin(3α1)) + · · ·+ (3 sin(αn)− sin(3αn))). It follows that x1 + · · ·+xn =

sin(α1) + · · · + sin(αn) = sin(3α1)+···+sin(3αn)
3

≤ n
3
. The only values of sin(α) which lead

to sin(3α) = 1 are 1
2

and -1. The condition for equality follows.

The first solution is a fairly straightforward, if ugly, solution based on the ideas of
smoothing and mixing variables. The reader is encouraged to grow familiar with such
methods as nearly all functions appearing in Olympiad inequalities involve a limited
number of inflexion points and thus open themselves up to such lines of attack. Al-
though the latter is cleaner, more elegant, and perhaps worthy of more praise, it
provides little use beyond this problem.

16. (Turkey) Let n ≥ 2 be an integer, and x1, x2, . . . , xn positive reals such that x2
1 + x2

2 +
· · ·+ x2

n = 1. Determine the smallest possible value of

x5
1

x2 + x3 + · · ·+ xn

+
x5

2

x3 + · · ·+ xn + x1

+ · · ·+ x5
n

x1 + · · ·+ xn−1

Solution. Observe that
∑n

i=1 xi

∑
j 6=i xj ≤ n− 1, so that

(
n∑

i=1

xi

(∑

j 6=i

xj

))(
n∑

i=1

x5
i∑

j 6=i xi

)
≥ (

x3
1 + · · ·+ x3

n

)2

= n2

(
x3

1 + · · ·+ x3
n

n

)2

≥ n2

(
x2

1 + · · ·+ x2
n

n

)3

=
1

n

Leads to
n∑

i=1

x5
i∑

j 6=i xi

≥ 1

n(n− 1)

with equality if and only if x1 = · · · = xn = 1√
n
. If the reader is bored by repeatedly

seeing the same Cauchy-clears-denominators punchline, then perhaps it is because the
author has succeeded in so inculcating its potency that the reader will never forget it!
The reasons for weighting each denominator with the first power of the corresponding
xi are twofold. On the convenience side, it leads to an integer exponent later, and
on the necessity side, it allows us to bound our new factor above because it has the
same degree as our given. Last, the application of Power-mean is the step required to
eliminate all variables by introducing our inhomogenous given equation.

17. (IMO Shortlist) Find the minimum value of c such that for any n and any nonnegative
reals x1, x2, . . . , xn which satisfy xi+1 ≥ x1 + x2 + · · ·+ xi for i = 1, . . . , n− 1, we have

√
x1 +

√
x2 + · · ·+√

xn ≤ c
√

x1 + x2 + · · ·+ xn

13



Solution. We claim that c = 1 +
√

2. First, we show that this is a lower bound by
considering x1 = 1, xk = 2k−2 for k ≥ 2. We have

n∑
i=1

√
xi = 1 +

2
n−1

2 − 1√
2− 1

= 2
n−1

2 (
√

2 + 1)−
√

2 ≤ c
√

x1 + · · ·+ xn = c2
n−1

2

2
n−1

2 (1 +
√

2)−√2

2
n−1

2

≤ c (∗)

(∗) must hold for all positive integers n, so c ≥ 1 +
√

2. We prove by induction that
this value of c is sufficient. The base case n = 1 is trivial, so we need only prove the
claim for n = n0 + 1 given that it holds for n = n0. By hypothesis, we have

s
√

x1 + · · ·+√
xn0 ≤ (1 +

√
2)

√
x1 + · · ·+ xn0

Let α = x1 + · · ·+ xn0 and β = xn0+1, where β ≥ α. Now

(1 +
√

2)
√

α +
√

β ≤ (1 +
√

2)
√

α + β (∗∗)
⇐⇒

√
β ≤ (1 +

√
2)

(√
α + β −√α

)

⇐⇒
√

β√
α + β −√α

≤ 1 +
√

2

⇐⇒
√

α

β
+

√
α

β
+ 1 ≤ 1 +

√
2 (∗ ∗ ∗)

The left hand side of (∗ ∗ ∗) is a decreasing function of β, and thus assumes its largest
possible value when β is made as small as possible. But because β ≥ α, this extremum
is 1 +

√
2. This proves that (∗∗) is valid as well, completing our induction.

This problem serves as a reminder that inequalities can be proven by induction. Indeed,
it seems almost a working theorem that problems containing an italicized n can be
solved by induction, or the equivalent.

18. (Poland 95) Let n be a positive integer. Compute the minimum value of the sum

x1 +
x2

2

2
+

x3
3

3
+ · · ·+ xn

n

n

where x1, x2, . . . , xn are positive reals such that

1

x1

+
1

x2

+ · · ·+ 1

xn

= n

Solution. The given is that the harmonic mean of x1, . . . , xn is 1, which implies that
the product x1x2 · · · xn is at least 1. Now, we apply weighted AM-GM

x1 +
x2

2

2
+

x3
3

3
+ · · ·+ xn

n

n
≥

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
1+1

2+···+ 1
n
√

x1x2 · · · xn

≥ 1 +
1

2
+

1

3
+ · · ·+ 1

n

14



The solution is a natural way of using the likeness of the exponents and denominators,
especially after we have interpreted the hideous given in a manner more to our liking.
We should not be afraid to lose the precision so long as we are confident that the
extremal value does occur at a1 = a2 = · · · = an = 1.

19. Prove that for all positive reals a, b, c, d,

a4b + b4c + c4d + d4a ≥ abcd(a + b + c + d)

Solution. By AM-GM,

23a4b + 7b4c + 11c4d + 10ad4

51
≥ 51
√

a102b51c51d51 = a2bcd

from which the desired follows easily. Indeed, the most difficult part of this problem is
determining suitable weights for the AM-GM. One way is to suppose arbitrary weights
x1, x2, x3, x4 for a4b, b4c, c4d, ad4 respectively, and solve the system

x1 + x2 + x3 + x4 = 1

4x1 + x2 = 2

4x2 + x3 = 1

4x3 + x4 = 1

20. (USAMO 01/3) Let a, b, c be nonnegative reals such that

a2 + b2 + c2 + abc = 4

Prove that
0 ≤ ab + bc + ca− abc ≤ 2

Solution [by Tony Zhang.] For the left hand side, note that we cannot have a, b, c >
1. Suppose WLOG that c ≤ 1. Then ab+bc+ca−abc ≥ ab+bc+ca−ab = c(a+b) ≥ 0.

For the right, 4 = a2 + b2 + c2 + abc ≥ 4(abc)
3
4 =⇒ abc ≤ 1. Since by the pigeon hole

principle, among three numbers either two exceed 1 or two are at most 1. Hence, we
assume WLOG that (a− 1)(b− 1) ≥ 0, which gives ab+1 ≥ a+ b ⇐⇒ abc+ c ≥ ac+
bc ⇐⇒ c ≥ ac+bc−abc. Now, we have ab+bc+ca−abc ≤ ab+c. Either we are done
or ab+c > 2. But in the latter case, 4 = (a2+b2)+c(c+2ab) > 2ab+2c = 2(ab+c) > 4,
a contradiction.

The lower bound was easy, but the upper bound required considerable asymmetric
manipulation. Such work may be necessary in the presence of complicated and asym-
metric givens. Although the above solution is not without traces of magic, it may be
possible to substitute the sheer cleverness of arguments such as (a− 1)(b− 1) ≥ 0 with
several cases.
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21. (Vietnam 98) Let x1, . . . , xn be positive reals such that

1

x1 + 1998
+

1

x2 + 1998
+ · · ·+ 1

xn + 1998
=

1

1998

Prove that
n
√

x1x2 · · · xn

n− 1
≥ 1998

Solution. Let yi = 1
xi+1998

so that y1 + · · ·+ yn = 1
1998

and xi = 1
yi
− 1998. Now

n∏
i=1

xi =
n∏

i=1

(
1

yi

− 1998

)
= e

Pn
i=1 ln

“
1
yi
−1998

”

Hence, to minimize the product of the xi, we equivalently minimize the sum of ln
(

1
yi
− 1998

)
.

In particular,

d

dy

(
ln

(
1

y
− 1998

))
=

1(
1
y
− 1998

)2 ·
−1

y2

=
−1

y − 1998y2

d2

dy2

(
ln

(
1

y
− 1998

))
=

1− 3996y

(y − 1998y2)2

So ln
(

1
y
− 1998

)
is convex on [0, 1/3996]. If we had 0 < yi ≤ 1/3996 for all i we could

apply Jensen. Since yi + yj ≤ 1/1998 for all i, j, we consider

(
1

a
− 1998

)(
1

b
− 1998

)
≥

(
2

a + b
− 1998

)2

⇐⇒ 1

ab
− 1998

(
1

a
+

1

b

)
≥ 4

(a + b)2
− 4 · 1998

a + b

⇐⇒ (a + b)2 − 1998(a + b)3 ≥ 4ab− 4ab(a + b) · 1998

⇐⇒ (a− b)2 ≥ 1998(a + b)(a− b)2

which incidentally holds for any a + b ≤ 1
1998

. Hence, any two yi and yj may be set to
their average while decreasing the sum in question; hence, we may assume yi ∈ (0, 1

3996
].

Now Jensen’s inequality shows that the minimum occurs when yi = 1
1998n

for all i, or
when xi = 1998(n− 1) for all i. It is easy to see that this yields equality.

In this problem, we used mixing variables to get around the difficulties presented by the
inflexion point. This is a useful idea to enhance our capabilities in applying smoothing
and Jensen.
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22. (Romania 99) Show that for all positive reals x1, . . . , xn with x1x2 · · ·xn = 1, we have

1

n− 1 + x1

+ · · ·+ 1

n− 1 + xn

≤ 1

Solution. First, we prove a lemma: the maximum of the sum occurs when n − 1 of
the xi are equal. Consider f(y) = 1

k+ey for an arbitrary nonnegative constant k. We

have f ′(y) = −ey

(k+ey)2
and f ′′(y) = ey(ey−k)

(k+ey)3
. Evidently f ′′(y) ≥ 0 ⇐⇒ ey ≥ k. Hence,

f(y) has a single inflexion point where y = ln(k), where f(y) is convex over the interval
((ln(k),∞). Now, we employ the substitution yi = ln(xi) so that y1 + · · ·+ yn = 0 and

n∑
i=1

1

n− 1 + xi

=
n∑

i=1

f(yi)

We take k = n − 1 and write k0 = ln(n − 1). Suppose that y1 ≥ · · · ≥ ym ≥ k0 ≥
ym+1 ≥ · · · xn for some positive m. Then by, Majorization,

f(y1) + · · ·+ f(ym) ≤ (m− 1)f(k0) + f(y1 + · · ·+ ym − (m− 1)k0)

But then, also by Majorization,

(m− 1)f(k0) + f(ym+1) + · · ·+ f(yn) ≤ (n− 1)f

(
(m− 1)k0 + ym+1 + · · ·+ yn

n− 1

)

Otherwise, all of the yi are less than k0. In that case we may directly apply Majorization
to equate n − 1 of the yi whilst increasing the sum in question. Hence, the lemma is
valid.7 N
Applying the lemma, it would suffice to show

k

k + x
+

1

k + 1
xk

≤ 1

Clearing the denominators,
(

k2 +
k

xk

)
+ (k + x) ≤ k2 + k

(
x +

1

xk

)
+ x1−k

−xk + x + k ≤ x1−k

But now this is evident. We have Bernoulli’s inequality, since x1−k = (1 + (x− 1))1−k ≥
1 + (x− 1)(1− k) = x + k − xk. Equality holds only where x = 1 or n = 2.

A number of formulations of this idea of equating variables have recently surfaced in
various forums; it is up to the reader to choose and learn the nuances of his favorite.
Although it is probably not unique, the author’s opinion is that our presentation here
(Karamata’s majorization inequality followed by Bernoulli’s inequality) is easily seen
to meet the burden of rigor without the woe of undue pedantry.

7This n − 1 equal value principle is particularly useful. If a differentiable function has a single inflexion
point and is evaluated at n arbitrary reals with a fixed sum, any minimum or maximum must occur where
some n− 1 variables are equal.
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23. (Darij Grinberg) Show that for all positive reals a, b, c,
√

b + c

a
+

√
c + a

b
+

√
a + b

c
≥ 4(a + b + c)√

(a + b)(b + c)(c + a)

Solution 1. By Cauchy, we have
√

(a + b)(a + c) ≥ a +
√

bc. Now,

∑
cyc

√
b + c

a
≥ 4(a + b + c)√

(a + b)(b + c)(c + a)

⇐⇒
∑
cyc

b + c

a

√
(a + b)(a + c) ≥ 4(a + b + c)

Substituting our result from Cauchy, it would suffice to show

∑
cyc

(b + c)

√
bc

a
≥ 2(a + b + c)

WLOG a ≥ b ≥ c, implying b + c ≤ c + a ≤ a + b and
√

bc
a
≤

√
ca
b
≤

√
ab
c

. Hence, by
Chebyshev and AM-GM,

∑
cyc

(b + c)

√
bc

a
≥

(2(a + b + c))
(√

bc
a

+
√

ca
b

+
√

ab
c

)

3

≥ 2(a + b + c)

as desired.

Solution 2. Let x =
√

b + c, y =
√

c + a, z =
√

a + b. Then x, y, z are the sides of
acute triangle XY Z (in the typical manner), since x2 + y2 = a + b + 2c > a + b = z2.
The inequality is equivalent to

∑
cyc

x

y2 + z2 − x2
≥ x2 + y2 + z2

xyz

Recalling that y2 + z2 − x2 = 2yz cos(X), we reduce this to the equivalent

∑
cyc

x2

cos(X)
≥ 2(x2 + y2 + z2)

WLOG, we have x ≥ y ≥ z, implying 1
cos(X)

≥ 1
cos(Y )

≥ 1
cos(Z)

, so that applying
Chebyshev to the left reduces the desired to proving that the sum of the reciprocals of
the cosines is at least 6. By AM-HM,

1

cos(X)
+

1

cos(Y )
+

1

cos(Z)
≥ 9

cos(X) + cos(Y ) + cos(Z)
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But recall from triangle geometry that cos(X) + cos(Y ) + cos(Z) = 1 + r
R

and R ≥ 2r.
The desired is now evident.

By now, the first solution should look fairly standard. The ideas of the second solution
are new, however, and merit further comment. The presence of radicals in inequalities
limit our pure algebraic manipulation unless we are willing to square them out. In
the first solution, we managed with Cauchy and AM-GM, but the second solution
shows that it is also possible to simply define new variables to clear them out. It is
important to recognize and interpret the implicit restrictions on any new variables, in
this case they were sides of an acute triangle. Finally, it is sometimes helpful to look
at the geometric interpretations of algebraic expressions. From our triangle we conjure
the law of Cosines, which can be rearranged to give an alternate means of writing
the denominators on the left. The introduction of cosine is hardly a problem, in fact
it should probably be regarded favorably, since we know that cosine is concave over
[0, π/2] and thus probably workable by Jensen. But, continuing with triangle geometry,
we see that this fact is not needed because the desired relation follows from well-known
triangle formulae.

24. Show that for all positive numbers x1, . . . , xn,

x3
1

x2
1 + x1x2 + x2

2

+
x3

2

x2
2 + x2x3 + x2

3

+ · · ·+ x3
n

x2
n + xnx1 + x2

1

≥ x1 + · · ·+ xn

3

Solution. Observe that 0 = (x1−x2)+(x2−x3)+ · · ·+(xn−x1) =
∑n

i=1

x3
i−x3

i+1

x2
i +xixi+1+x2

i+1

(where xn+1 = x1). Hence,

n∑
i=1

x3
i

x2
i + xixi+1x2

i+1

=
1

2

n∑
i=1

x3
i + x3

i+1

x2
i + xixi+1 + x2

i+1

But now a3 + b3 ≥ 1
3
a3 + 2

3
a2b + 2

3
ab2 + 1

3
b3 = 1

3
(a + b)(a2 + ab + b2). Hence,

1

2

n∑
i=1

x3
i + x3

i+1

x2
i + xixi+1 + x2

i+1

≥ 1

2

n∑
i=1

xi + xi+3

3
=

1

3

n∑
i=1

xi

as desired.

This problem is difficult until the solver realizes that the cyclicly written inequality is
actually symmetric. After rewriting the desired relation, all that remains is a short
isolated fudging argument.

25. Let a, b, c be positive reals such that a + b ≥ c; b + c ≥ a; and c + a ≥ b, we have

2a2(b + c) + 2b2(c + a) + 2c2(a + b) ≥ a3 + b3 + c3 + 9abc

Solution. To handle the constraints, put a = y + z, b = z + x, c = x + y with
x, y, z ≥ 0. Now, the left hand side becomes 4x3 + 4y3 + 4z3 + 10x2(y + z) + 10y2(z +

19



x)+ 10z2(x+ y)+ 24xyz while the right hand side becomes 2x3 +2y3 +2z3 +12x2(y +
z) + 12y2(z + x) + 12z2(x + y) + 18xyz. The desired is seen to be equivalent to
x3 + y3 + z3 + 3xyz ≥ x2(y + z) + y2(z + x) + z2(x + y), which is Schur’s inequality.
Equality holds where x = y = z, which gives (a, b, c) = (t, t, t), or when two of x, y, z
are equal and the third is 0, which gives (a, b, c) ∈ {(2t, t, t), (t, 2t, t), (t, t, 2t)}.
Certainly, the free-variable inequality does not hold; one merely sets b = c → 0. In-
specting, equality holds for (a, b, c) = (t, t, t) and (2t, t, t). The devious author thought
he could hide the nontrivial equality cases! In other words, any cavalier use of AM-
GM, Jensen, or Cauchy with unique equality case a = b = c will immediately falsify
the problem. There aren’t many famous inequalities in our toolbox with nontrivial
equality cases, and so after implicitly removing the restrictions, it is hardly surprising
that the problem quickly reduces to Schur’s.

26. Let a, b, c be the lengths of the sides of a triangle. Prove that

a√
2b2 + 2c2 − a2

+
b√

2c2 + 2a2 − b2
+

c√
2a2 + 2b2 − c2

≥
√

3

Solution 1. Again write a = y + z, b = z + x, and c = x + y, noting that x, y, z are
positive. (Triangles are generally taken to be non-degenerate when used in inequalities.)
We have

∑
cyc

a√
2b2 + 2c2 − a2

=
∑
cyc

y + z√
4x2 + 4xy + 4xz + y2 + z2 − 2yz

Consider the convex function f(x) = 1√
x
. (As we shall see, Jensen almost always

provides a tractable means of eliminating radicals from inequalities.) Put x+y+z = 1.
We have

∑
cyc

(y + z)f
(
4x2 + 4xy + 4xz + y2 + z2 − 2yz

) ≥

((y + z) + (z + x) + (x + y)) f

(∑
cyc(y + z) (4x2 + 4xy + 4xz + y2 + z2 − 2yz)

(y + z) + (z + x) + (x + y)

)

=
2
√

2√∑
cyc 4x2(y + z) + (4xy2 + 4xyz) + (4xyz + 4xz2) + y3 + z3 − y2z − yz2

Noting that
∑

cyc 4x2(y + z) + (4xy2 + 4xyz) + (4xyz + 4xz2) + y3 + z3 − y2z − yz2 =∑
cyc 2x3 + 7x2(y + z) + 8xyz,

8(x + y + z)3 ≥ 3
∑
cyc

2x3 + 7x2(y + z) + 8xyz

⇐⇒
∑
sym

4x3 + 24x2y + 8xyz ≥
∑
sym

3x3 + 21x2y + 12xyz

⇐⇒ 2x3 + 2y3 + 2z3 + 3
(
x2(y + z) + y2(z + x) + z2(x + y)

) ≥ 24xyz
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which follows by AM-GM. As a follow up on an earlier mentioned connection, oberserve
the similarity of the above application of Jensen and the following inequality (which
follows by Hölder’s inequality)

(∑
i

αiβi

)(∑
i

αi
1√
βi

)2

≥
(∑

i

αi

)3

Solution 2 [by Darij Grinberg.] Let ABC be a triangle of side lengths a, b, c
in the usual order. Denote by ma,mb,mc the lengths of the medians from A,B, C
respectively. Recall from triangle goemetry that ma = 1

2

√
2b2 + 2c2 − a2, so that we

need only show a
ma

+ b
mb

+ c
mc
≥ 2

√
3. But a triangle with side lengths ma,mb,mc, in

turn, has medians of length 3a
4
, 3b

4
, and 3c

4
. The desired inequality is therefore equivalent

to
4
3
ma

a
+

4
3
mb

b
+

4
3
mc

c
≥ 2

√
3 where we refer to the new triangle ABC. Recalling that

2
3
ma = AG, where G is the centroid, the desired is seen to be equivalent to the geometric

inequality AG
a

+ BG
b

+ CG
c
≥ √

3. But we are done as we recall from triangle geometry

that AM
a

+ BM
b

+ CM
c
≥ √

3 holds for any point inside triangle ABC.8

As with example 22, we give two solutions of different flavors. A completely algebraic
solution, and a solution that draws heavily on geometry. We elaborate on the former.
Perhaps this is the first time the reader has seen Jensen used to clear radicals from
denominators. This is actually a very common idea. In time, it will be recognized as
an obvious consequence of the convexity of f(x) = xc for c < 0. Precisely the same
solution can be given by Hölder’s inequality as the subtle connection between Jensen
and Hölder resurfaces. However, c can assume a continuum of values in the Jensen
solution, and Hölder can be used on several distinct sequences as we shall see shortly.

27. (IMO 99/2) For n ≥ 2 a fixed positive integer, find the smallest constant C such that
for all nonnegative reals x1, . . . , xn,

∑
1≤i<j≤n

xixj(x
2
i + x2

j) ≤ C

(
n∑

i=1

xi

)4

Solution. The answer is C = 1
8
, which is obtained when any two xi are non-zero and

equal and the rest are 0. Observe that by AM-GM,

(x1 + · · ·+ xn)4 =

(
n∑

i=1

x2
i + 2

∑
1≤i<j≤n

xixj

)2

≥ 4

(
n∑

i=1

x2
i

)(
2

∑
1≤i<j≤n

xixj

)

8For a complete proof of this last inequality, see http://www.mathlinks.ro/Forum/viewtopic.php?t=21016
post #14.
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= 8
∑

1≤i<j≤n

xixj

n∑

k=1

x2
k

But x2
1 + · · ·+ x2

n ≥ x2
i + x2

j with equality iff xk = 0 for all k 6= i, j. It follows that

(x1 + · · ·+ xn)4 ≥ 8
∑

1≤i<j≤n

xixj

(
x2

i + x2
j

)

as desired.

When written forward, this solution may seem rather arbitrary, but it is actually fairly
well motivated. Taking the extremal value n = 2, we can rewrite the inequality as

0 ≤ a4 + (4− 1/c)a3b + 6a2b2 + (4− 1/c)ab3 + b4 = (a− b)4 + (8− 1/c)ab(a2 + b2)

Which is a good reason to conjecture C = 1/8. Then, taking xn = 0, we show that
the case n = k − 1 is a special case of the stronger inequality where n = k, so that for
n > 2 we have C ≥ 1/8.

We should always ask what a reasonable yet provable answer is. In this case, if the
minimal C is greater than 1/8 for some n, then there must be an even stronger case
than x1 = x2 = 1, x3 = · · · = xn = 0. That seems unreasonable, being as though
our current equality case is already highly nontrivial, so we proceed to establish our
conjectured answer.

28. Show that for nonnegative reals a, b, c,

2a6 + 2b6 + 2c6 + 16a3b3 + 16b3c3 + 16c3a3 ≥ 9a4(b2 + c2) + 9b4(c2 + a2) + 9c4(a2 + b2)

Solution 1. Consider
∑
cyc

(a− b)6 =
∑
cyc

a6 − 6a5b + 15a4b2 − 20a3b3 + 15a2b4 − 6ab5 + b6 ≥ 0

and ∑
cyc

ab(a− b)4 =
∑
cyc

a5b− 4a4b2 + 6a3b3 − 4a2b4 + ab5 ≥ 0

Adding six times the latter to the former yields the desired result.

Solution 2. We shall prove a6 − 9a4b2 + 16a3b3 − 9a2b4 + b6 ≥ 0. We have

a6 − 2a3b3 + b6 = (a3 − b3)2

=
(
(a− b)(a2 + ab + b2)

)2

≥ (a− b)2(3ab)2 = 9a4b2 − 18a3b3 + 9a2b4

As desired. The result now follows from adding this lemma cyclicly. The main difficulty
with this problem is the absence of a5b terms on the right and also the presence of

22



a4b2 terms on the right - contrary to where Schur’s inequality would generate them.
Evidently AM-GM is too weak to be applied directly, since a6 + 2a3b3 ≥ 3a4b2 cannot
be added symmetrically to deduce the problem. By introducing the factor (a − b)2,
however, we weight the AM-GM by a factor which we “know” will be zero at equality,
thereby increasing its sharpness.

29. Let 0 ≤ a, b, c ≤ 1
2

be real numbers with a + b + c = 1. Show that

a3 + b3 + c3 + 4abc ≤ 9

32

Solution. Let f(a, b, c) = a3 + b3 + c3 + 4abc and g(a, b, c) = a + b + c = 1. Because
f and g are polynomials, they have continuous first partial derivatives. Moreover,
the gradient of g is never zero. Hence, by the theorem of Lagrange Multipliers,
any extrema occur on the boundary or where ∇f = λ∇g for suitable scalars λ. As
∇f =< 3a2 + 4bc, 3b2 + 4ca, 3c2 + 4ab > and ∇g =< 1, 1, 1 >, we have

λ = 3a2 + 4bc

= 3b2 + 4ca

= 3c2 + 4ab

g(a, b, c) = a + b + c = 1

We have 3a2 + 4bc = 3b2 + 4ca or (a − b)(3a + 3b − 4c) = (a − b)(3 − 7c) = 0 for
any permutation of a, b, c. Hence, without loss of generality, a = b. Now, 3a2 + 4ac =
3c2 +4a2 and a2−4ac+3c2 = (a− c)(a−3c) = 0. The interior local extrema therefore
occur when a = b = c or when two of {a, b, c} are three times as large as the third.
Checking, we have f(1

3
, 1

3
, 1

3
) = 7/27 < 13/49 = f(1

7
, 3

7
, 3

7
). Recalling that f(a, b, c) is

symmetric in a, b, c, the only boundary check we need is f(1
2
, t, 1

2
−t) ≤ 9

32
for 0 ≤ t ≤ 1

2
.

We solve

h(t) = f

(
1

2
, t,

1

2
− t

)

=
1

8
+ t3 +

(
1

2
− t

)3

+ 2t

(
1

2
− t

)

=
1

4
+

t

4
− t2

2

h(t) is 1
4

at either endpoint. Its derivative h′(t) = 1
4
− t is zero only at t = 1

4
. Checking,

h(1
4
) = f(1

2
, 1

4
, 1

4
) = 9

32
. Since h(t) has a continuous derivative, we are done. (As a

further check, we could observe that h′′(t) = −1 < 0, which guarantees that h(1
4
) is a

local maximum.)

Usage Note. The use of Lagrange Multipliers in any solution will almost certainly
draw hostile review, in the sense that the tiniest of errors will be grounds for null
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marks. If you consider multipliers on Olympiads, be diligent and provide explicit,
kosher remarks about the continuous first partial derivatives of both f(x1, . . . , xn) and
the constraint g(x1, . . . , xn) = k, as well as ∇g 6= 0, before proceeding to solve the
system ∇f = λ∇g. The main reason this approach is so severely detested is that, given
sufficient computational fortitude (if you are able to sort through the relevant algebra
and Calculus), it can and will produce a complete solution. The example provided here
is included for completeness of instruction; typical multipliers solutions will not be as
clean or painless.9

30. (Vasile Cirtoaje) Let p ≥ 2 be a real number. Show that for all nonnegative reals a, b, c,

3

√
a3 + pabc

1 + p
+ 3

√
b3 + pabc

1 + p
+ 3

√
c3 + pabc

1 + p
≤ a + b + c

Solution. By Hölder,

(∑
cyc

3

√
a3 + pabc

1 + p

)3

≤
(∑

cyc

1

1 + p

) (∑
cyc

a

)(∑
cyc

a2 + pbc

)

But a2 + b2 + c2 ≥ ab + bc + ca (proven by AM-GM, factoring, or a number of other
methods) implies that

∑
cyc

a2 + pbc ≤ (p + 1)
∑
cyc

a2 + 2bc

3
=

p + 1

3
(a + b + c)2

From which we conclude

(∑
cyc

3

√
a3 + pabc

1 + p

)3

≤ (a + b + c)3

as desired.

This problem illustrates one feature that Hölder’s inequality holds over Jensen’s in-
equality: we can use unequal sequences. We base our selection of sequences on the

factorization of the arguments within each cube root - a(a2+pbc)
1+p

- which is especially
attractive because p = 2 then carries special significance as the value of p where we
obtain the identity a2 + b2 + c2 + 2(bc + ca + ab) = (a + b + c)2.

31. Let a, b, c be real numbers such that abc = −1. Show that

a4 + b4 + c4 + 3(a + b + c) ≥ a2

b
+

a2

c
+

b2

c
+

b2

a
+

c2

a
+

c2

b

9Just how painful can the calculations get? Most multipliers solutions will tend to look more like
http://documents.wolfram.com/mathematica/Demos/Notebooks/InequalityProof.html than this solution.
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Solution. First we homogenize, obtaining a4 + b4 + c4 + a3(b + c) + b3(c + a) + c3(a +
b)−3abc(a+ b+ c) ≥ 0. As this is homogenous in the fourth degree, we can scale a, b, c
by any real k and hence may now ignore abc = −1. Equality holds at a = b = c = 1,
but also at a = b = 1, c = −2, a = 1, b = 0, c = −1, and a number of unusual
locations with the commonality that a + b + c = 0. Indeed, c = −a− b is a parametric
solution, and we discover the factorization (a + b + c)2(a2 + b2 + c2− ab− bc− ca) ≥ 0.
(We are motivated to work with factorizations because there are essentially no other
inequalities with a + b + c = 0 as an equality condition.)

32. (MOP 2003) Show that for all nonnegative reals a, b, c,

a4(b2 + c2) + b4(c2 + a2) + c4(a2 + b2) +

2abc(a2b + a2c + b2c + b2a + c2a + c2b− a3 − b3 − c3 − 3abc)

≥ 2a3b3 + 2b3c3 + 2c3a3

Solution. As was suggested by the previous problem, checking for equality cases is
important when deciding how to solve a problem. We see that setting a = b produces
equality. As the expression is symmetric, this certainly implies that b = c and c = a are
equality cases. Hence, if P (a, b, c) is the difference LHS - RHS, then (a− b)(b− c)(c−
a)|P (a, b, c). Obviously, if the problem is going to be true, (a−b) must be a double root
of P , and accordingly we discover the factorization P (a, b, c) = (a− b)2(b− c)2(c− a)2.

The result illustrated above was no accident. If (x−y) divides a symmetric polynomial
P (x, y, z), then (x − y)2 divides the same polynomial. If we write P (x, y, z) = (x −
y)Q(x, y, z), then (x− y)Q(x, y, z) = P (x, y, z) = P (y, x, z) = (y − x)Q(y, x, z), which
gives Q(x, y, z) = −Q(y, x, z). Hence Q(x, x, z) = 0, and (x−y) also divides Q(x, y, z).

33. (Cezar Lupu) Let a, b, c be positive reals such that a + b + c + abc = 4. Prove that

a√
b + c

+
b√

c + a
+

c√
a + b

≥
√

2

2
· (a + b + c)

Solution. By Cauchy
(∑

cyc

a
√

b + c

)(∑
cyc

a√
b + c

)
≥ (a + b + c)2

But, also by Cauchy,

√
(a + b + c) (a(b + c) + b(c + a) + c(a + b)) ≥

∑
cyc

a
√

b + c

Hence,
∑
cyc

a√
b + c

≥
√

2

2
· (a + b + c) ·

√
a + b + c

ab + bc + ca
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And we need only show a + b + c ≥ ab + bc + ca. Schur’s inequality for r = 1
can be expressed as 9abc

a+b+c
≥ 4(ab + bc + ca) − (a + b + c)2. Now, we suppose that

ab + bc + ca > a + b + c, and have

9abc

a + b + c
≥ 4(ab + bc + ca)− (a + b + c)2

> (a + b + c) (4− (a + b + c)) = abc(a + b + c)

Hence, a + b + c < 3. But then abc < 1, which implies 4 = a + b + c + abc < 4.
Contradiction, as desired.

Our proof of the result a + b + c + abc = 4 =⇒ a + b + c ≥ ab + bc + ca is necessarily a
bit magical, but it indicates another way to successfully use given constraints besides
clever substitution or homogenization. Strange relations passed off as equations can
sometimes be interpreted as simple inequalities.

34. (Iran 1996) Show that for all positive real numbers a, b, c,

(ab + bc + ca)

(
1

(a + b)2
+

1

(b + c)2
+

1

(c + a)2

)
≥ 9

4

Solution. Fearless courage is the foundation of all success.10 When everything else
fails, return to the sure-fire strategy of clearing all denominators. In this case, we
obtain

4(a + b)2(b + c)2(c + a)2(ab + bc + ca)

(
1

(a + b)2
+

1

(b + c)2
+

1

(c + a)2

)
=

∑
sym

4a5b + 8a4b2 + 10a4bc + 6a3b3 + 52a3b2c + 16a2b2c2

on the left, and on the right,

9(a + b)2(b + c)2(c + a)2 =∑
sym

9a4b2 + 9a4bc + 9a3b3 + 54a3b2c + 15a2b2c2

Canceling like terms, we seek

∑
sym

4a5b− a4b2 + a4bc− 3a3b3 − 2a3b2c + a2b2c2

Sure enough, this is true, since 3a5b+ab5

4
≥ a4b2 and a4b2+a2b4

2
≥ a3b3 by AM-GM, and

abc (a3 + b3 + c3 − a2(b + c) + b2(c + a) + c2(a + b) + 3abc) ≥ 0 by Schur.

10Found on a fortune cookie by Po-Ru Loh while grading an inequality on 2005 Mock IMO Day 2 that
was solved by brutal force.
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In fact, this is the only known solution to this inequality. And it really did appear on
a national Olympiad! This was probably a one-of-a-kind occurrence, however, because
problems whose only solution is uninspiring dumbassing are not especially popular
nowadays. Nevertheless, one should never categorically discount expansion unless it is
absolutely ridiculous.

35. (Japan 1997) Show that for all positive reals a, b, c,

(a + b− c)2

(a + b)2 + c2
+

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
≥ 3

5

Solution. Put a + b + c = 3 so that equality will hold at a = b = c = 1 and suppose
that there exists some k for which

(b + c− a)2

(b + c)2 + a2
=

(3− 2a)2

(3− a)2 + a2
≥ 1

5
+ ka− k

for all positive a, b, c; such an inequality would allow us to add cyclicly to deduce the
desired inequality. As the inequality is parametrically contrived to yield equality where
a = 1, we need to find k such that a = 1 is a double root. At a = 1, the derivative on

the left is (2(3−2a)·−2)((3−a)2+a2)−((3−2a)2)(2(3−a)·−1+2a)

((3−a)2+a2)2
= −18

25
. The derivative on the right

is k, so we set k = −18
25

. But for this k we find

(3− 2a)2 −
(

1

5
+ ka− k

) (
(3− a)2 + a2

)
=

18

25
− 54a2

25
+

36a3

25

=
18

25
(a− 1)2(2a + 1) ≥ 0

as desired. Alternatively, we could have used AM-GM to show a3 + a3 + 1 ≥ 3a2. As
hinted at by a previous problem, inequalities are closely linked to polynomials with
roots of even multiplicity. The isolated manipulation idea used in this solution offers
a completely different approach to the inequalities which work with every term.

36. (MOP 02) Let a, b, c be positive reals. Prove that

(
2a

b + c

) 2
3

+

(
2b

c + a

) 2
3

+

(
2c

a + b

) 2
3

≥ 3

Solution. Suppose that there exists some r such that

(
2a

b + c

) 2
3

≥ 3ar

ar + br + cr

We could sum the inequality cyclicly to deduce what we want. Since equality holds at
a = b = c = 1, we use derivatives to find a suitable r. At the said equality case, on
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the left, the partial derivative with respect to a is 2
3
, while the same derivative on the

right is 2
3
r. Equating the two we have r = 1. (This is necessary since otherwise the

inequality will not hold for either a = 1 + ε or a = 1− ε.)11 Now,

3a

a + b + c
≤ 3a

3 3

√
a · ( b+c

2

)2

=
a

2
3

(
b+c
2

) 2
3

=

(
2a

b + c

) 2
3

by AM-GM, as desired.

37. (Mildorf) Let n ≥ 2 be an integer. Prove that for all reals a1, a2, . . . , an > 0 and reals
p, k ≥ 1, (

a1 + a2 + · · ·+ an

ap
1 + ap

2 + · · ·+ ap
n

)k

≥ ak
1 + ak

2 + · · ·+ ak
n

apk
1 + apk

2 + · · ·+ apk
n

where inequality holds iff p = 1 or k = 1 or a1 = a2 = · · · = an, flips if instead
0 < p < 1, and flips (possibly again) if instead 0 < k < 1.

Solution. Taking the kth root of both sides, we see that the inequality is equivalent
to

n∑
i=1

k

√
ak

i

ak
1 + ak

2 + · · ·+ ak
n

≥
n∑

i=1

k

√
apk

i

apk
1 + apk

2 + · · · apk
n

WLOG, suppose that a1 ≥ a2 ≥ · · · ≥ an. We prove a lemma. Let Si =
ap

i

ap
1+···+ap

n
and

Ti =
aq

i

aq
1+···+aq

n
for i = 1, 2, . . . , n where 0 < q < p. Then the sequence S1, S2, . . . , Sn

majorizes the sequence T1, T2, . . . , Tn.

To prove the claim, we note that S1 ≥ · · · ≥ Sn and T1 ≥ · · · ≥ Tn and have, for
m ≤ n,

m∑
i=1

Si ≥
m∑

i=1

Ti

⇐⇒ (ap
1 + · · ·+ ap

m) (aq
1 + · · ·+ aq

n) ≥ (aq
1 + · · ·+ aq

m) (ap
1 + · · ·+ ap

n)

⇐⇒ (ap
1 + · · ·+ ap

m)
(
aq

m+1 + · · ·+ aq
n

) ≥ (aq
1 + · · ·+ aq

m)
(
ap

m+1 + · · ·+ ap
n

)

⇐⇒
∑

(i,j)| {1≤i≤m<j≤n}
ap

i a
q
j − aq

i a
p
j ≥ 0

11Actually, even this is a special case of the general sense that the convexity of one side must exceed
the convexity of the other. More precisely, we have the following result: Let f and g functions over the
domain D with continuous partial derivatives. If f(ν) ≥ g(ν) for all ν ∈ D, then at every equality case ν0,
∇(f − g)(ν0) = 0 and every component of ∇2 (f − g) (ν0) is nonnegative.
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Which is obvious. In particular, m = n is the equality case, and the claim is established.
But now the desired is a direct consequence of the Majorization inequality applied to
the sequences in question and the function f(x) = k

√
x.

38. (Vasile Cirtoaje) Show that for all real numbers a, b, c,

(a2 + b2 + c2)2 ≥ 3
(
a3b + b3c + c3a

)

Solution. We will be content to give the identity

(a2 + b2 + c2)2 − 3(a3b + b3c + c3a) =
1

2

∑
cyc

(
a2 − 2ab + bc− c2 + ca

)2

Any Olympiad partipant should be comfortable constructing various inequalities through
well-chosen squares. Here, we could certainly have figured we were summing the square
of a quadratic that is 0 when a = b = c such that no term a2bc is left uncancelled. A
good exercise is to show that equality actually holds iff a = b = c or, for some cyclic
permutation, a : b : c ≡ sin2

(
4π
7

)
: sin2

(
2π
7

)
: sin2

(
π
7

)
.

39. (Anh-Cuong) Show that for all nonnegative reals a, b, c,

a3 + b3 + c3 + 3abc ≥ ab
√

2a2 + 2b2 + bc
√

2b2 + 2c2 + ca
√

2c2 + 2a2

Solution. Upon observing that this inequality is stronger than Schur’s inequality for
r = 1, we are inspired to prove a sharp lemma to eliminate the radical. Knowing that√

2x2 + 2y2 ≥ x + y ≥ 2xy
x+y

, we seek a combination of the latter two that exceeds the
former. We find

3x2 + 2xy + 3y2

2(x + y)
≥

√
2x2 + 2y2

This follows from algebra, since (3x2 + 2xy + 3y2)
2

= 9x4 + 12x3y + 22x2y2 + 12xy3 +
9y4 ≥ 8x4 +16x3y +16x2y2 +16xy3 +8y4 = 4(x+ y)2(2x2 +2y2), so that (3x2 +2xy +
3y2)2 − 4(x + y)2(2x2 + 2y2) = x4 − 4x3y + 6x2y2 − 4xy3 + y4 = (x− y)4 ≥ 0. Now,

∑
cyc

ab
√

2a2 + 2b2 ≤
∑
cyc

(3a2 + 2ab + 3b2)ab

2(a + b)

So it would suffice to show∑
cyc

a(a− b)(a− c) =
∑
cyc

(a3 + abc− ab(a + b))

≥
∑
cyc

(3a2 + 2ab + 3b2)ab

2(a + b)
− ab(a + b)

=
∑
cyc

3a3b + 2a2b2 + 3ab3 − 2a3b− 4a2c2 − 2ab3

2(a + b)

=
∑
cyc

ab(a− b)2

2(a + b)
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But ∑
cyc

(b + c− a)(b− c)2 = 2
∑
cyc

a(a− b)(a− c)

so that the desired is
∑
cyc

(
b + c− a− bc

b + c

)
(b− c)2 ≥ 0

which is evident, since without loss of generality we may assume a ≥ b ≥ c and find
(

a + b− c− ab

a + b

)
(a− b)2 ≥ 0

(
c + a− b− ac

a + c

) (
(a− c)2 − (b− c)2

) ≥ 0

(
b + c− a− bc

b + c

)
(b− c)2 +

(
c + a− b− ac

a + c

)
(b− c)2 ≥ 0

The key to this solution was the sharp upper bound on the root-mean-square. At first
glance our lemma seems rather arbitrary and contrived. Actually, it is a special case
of a very sharp bound on the two variable power mean that I have conjectured and
proved.

Mildorf’s Lemma 1 Let k ≥ −1 be an integer. Then for all positive reals a and b,

(1 + k)(a− b)2 + 8ab

4(a + b)
≥ k

√
ak + bk

2

with equality if and only if a = b or k = ±1, where the power mean k = 0 is interpreted
to be the geometric mean

√
ab. Moreover, if k < −1, then the inequality holds in the

reverse direction, with equality if and only if a = b.

Usage Note. In early November 2005, I proved an extension of this lemma to addi-
tional values of k.12 Thus, you may rest assured that the result stated above is true. I
have since had the proof published online in the new journal Mathematical Reflec-
tions. The article is posted at

http://reflections.awesomemath.org/2006 2/2006 2 sharpbound.pdf

I have also posted a copy at my MIT site as “ASharpBound.pdf.” However, the proof
is rather difficult (or at least so I think, being as though it took me nearly half a year)
and the lemma is far from mainstream. Thus, should you require it on an Olympiad,
you should prove it for whatever particular value of k you are invoking. This is not
terribly difficult if k is a small integer. One simply takes the kth power of both sides
and factors the difference of the two sides as (a− b)4 · P (a, b), etc.

12In particular, the inequality holds for all k in (−∞,−1), {−1, 0, 1}, (1, 3/2], [2,∞) with the signs ≤,≥,≤
,≥ respectively, with equality iff a = b or k = ±1.
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40. For x ≥ y ≥ 1, prove that

x√
x + y

+
y√

y + 1
+

1√
x + 1

≥ y√
x + y

+
x√

x + 1
+

1√
y + 1

Solution. By observation, equality holds when y = 1 and when x = y. Combining
this with the restriction, it makes sense to write x = y+a and y = 1+b where a, b ≥ 0.
Now we can write

x− y√
x + y

+
y − 1√
y + 1

+
1− x√
1 + x

≥ 0

⇐⇒ a√
2 + a + 2b

+
b√

2 + b
≥ a + b√

2 + a + b

But this is evident by Jensen’s inequality applied to the convex function f(x) = 1√
x
,

since

af(2 + a + 2b) + bf(2 + b) ≥ (a + b)f

(
a(2 + a + 2b) + b(2 + b)

a + b

)

= (a + b)f

(
(a + b)2 + 2(a + b)

a + b

)

=
a + b√

2 + a + b

as desired.

The intended solution to this problem is very similar but far more difficult, employing
Jensen (or Cauchy) in conjunction Abel summation on the variables x, y, z (1 is an
arbitrary substitute for z ≤ y.) That solution is far more difficult than ours, however,
for the substitution makes the line of attack quite obvious.

41. (Vasile Cirtoaje) Show that for positive reals a, b, c,

1

4a2 − ab + 4b2
+

1

4b2 − bc + 4c2
+

1

4c2 − ca + 4a2
≥ 9

7(a2 + b2 + c2)

Solution. Upon expansion, we see that it is equivalent to

∑
sym

56a6 − 28a5b + 128a4b2 + 44a3b3 +
95

2
a4bc + 31a3b2c− 45

2
a2b2c2 ≥ 0

We conjure up the following inequalities:

∑
sym

a6 − 2a5b + a4bc ≥ 0 (1)
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∑
sym

a5b− 4a4b2 + 3a3b3 ≥ 0 (2)

∑
sym

a4b2 − a4bc− a3b3 + 2a3b2c− a2b2c2 ≥ 0 (3)

∑
sym

a4bc− 2a3b2c + a2b2c2 ≥ 0 (4)

(1) and (4) follow from Schur’s inequality for r = 4 and r = 1 (multiplied by abc)
respectively. (2) is the result of expanding

∑
cyc ab(a−b)4 ≥ 0, and (3) is the expanded

form of the famous (a− b)2(b− c)2(c−a)2 ≥ 0. The desired now follows by subtracting
56 times (1), 84 times (2), 208 times (3), 399

2
times (4), and then simple AM-GM to

clear the remaining a2b2c2.

This is about as difficult as a dumbass solution can get. A good general strategy
is to work with the sharpest inequalities you can find until you reduce a problem
to something obvious, starting with the most powerful (most bunched, in this case∑

sym a6) term and work your way down to the weak terms while keeping the most
powerful term’s coefficient positive. My solution to this problem starts with (1), Schur
with r = 4 (Schur is stronger for larger r), which is almost certainly sharper than the
inequality in question. Next, inequality (2) is a sharp cyclic sum to use the a5b terms.
In particular, it relates terms involving only two of the three variables. Most of the
time, the only inequality that can “pull up” symmetric sums involving three variables
to stronger ones involving just two is Schur, although it does so at the expense of a very
strong term with only one variable. Hence, we made a logical choice. Inequality (3) is
extremely sharp, and allowed us to obtain more a4bc and a3b3 terms simultaneously.
In particular, it was necessary to cancel the a3b3 terms. I’ll note that this inequality
is peculiar to sixth degree symmetry in three variables - it does not belong to a family
of similar, nice inequalities. Finally, inequality (4), which is a handy corollary to (3),
is another Schur. Every inequality we have used so far is quite sharp, and so it is no
surprise that the leftovers are the comparatively weak AM-GM.

42. (USAMO 00/6) Let n ≥ 2 be an integer and S = {1, 2, . . . , n}. Show that for all
nonnegative reals a1, a2, . . . , an, b1, b2, . . . , bn,

∑
i,j∈S

min{aiaj, bibj} ≤
∑
i,j∈S

min{aibj, ajbi}

Solution. We first prove a lemma:

Lemma 1 Let r1, . . . , rn be nonnegative numbers, and let x1, . . . , xn be artbirary reals.
Then ∑

1≤i,j≤n

min(ri, rj)xixj ≥ 0
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Proof of lemma. We assume without loss of generality that r1 ≤ r2 ≤ · · · ≤ rn. For
notational convenience, define r0 = 0. Then the sum in question is equal to

n∑
i=1

(ri − ri−1)

(
n∑

j=i

xj

)2

Each summand is nonnegative, so the sum is nonnegative. N
Now define ri by ri = max(ai,bi)

min(ai,bi)
− 1 if aibi 6= 0 and ri = 0 otherwise, and define

xi = sign(ai − bi) min(ai, bi) (with sign(0) = 1). We claim that

min(aibj, ajbi)−min(aiaj, bibj) = min(ri, rj)xixj (∗)

If ai and bi are exchanged, both sides of (∗) change sines. Thus, we may assume ai ≥ bi

and aj ≥ bj. If bibj = 0, then both sides are 0 and we are done, so we assume further
that bi, bj > 0. Then ri = ai

bi
− 1 and rj =

aj

bj
− 1, while xi = bi, and xj = bj. Plugging

these expressions in, we obtain

min(ri, rj)xixj = min

(
ai

bi

− 1,
aj

bj

− 1

)
bibj

= min(aibj, ajbi)− bibj

= min(aibj, ajbi)−min(aiaj, bibj)

Applying the lemma in conjunction with (∗), we have

∑
1≤i,j≤n

[min(aibj, ajbi)−min(aiaj, bibj)] =
∑

1≤i,j≤n

min(ri, rj)xixj ≥ 0

and we are done.

43. (Gabriel Dospinescu) For any n > 2 find the minimal value kn such that for any positive
reals x1, x2, . . . , xn with product 1 we have

n∑
i=1

1√
1 + knxi

≤ n− 1

Solution. From x1 = x2 = · · · = xn = 1, it is clear that kn ≥ 2n−1
(n−1)2

. We show

that kn = 2n−1
(n−1)2

is satisfactory. Let xi = eyi ; the condition x1x2 · · ·xn = 1 rewrites as

y1 + y2 + · · · + yn = 0. Consider the function f(y) = 1√
1+kney . The desired inequality

is equivalent to
f(y1) + · · ·+ f(yn) ≤ n− 1

We have f ′(y) = −kney

2(1+kney)3/2 and f ′′(y) = kney(kney−2)

4(1+kney)5/2 . Evidently, f(y) has a single

inflexion point at y∗ = ln(2/kn), where f is convex over [y∗,∞) and concave over
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(−∞, y∗]. Without loss of generality, y1 ≥ · · · ≥ yk ≥ y∗ ≥ yk+1 ≥ · · · ≥ yn. Then
since ([y1 + · · ·+ yk− (k− 1)y∗], y∗, y∗, . . . , y∗) Â (y1, . . . , yk), Karamata’s majorization
inequality gives

f(y1) + · · ·+ f(yk) ≤ (k − 1)f(y∗) + f (y1 + · · ·+ yk − (k − 1)y∗) (∗)
Jensen’s inequality yields

(k−1)f(y∗)+f(yk+1)+ · · ·+f(yn) ≤ (n−1) ·f
(

(k − 1)y∗ + yk+1 + · · ·+ yn

n− 1

)
(∗∗)

Combining (∗) and (∗∗), we see that

f(y1)+· · ·+f(yn) ≤ f (y1 + · · ·+ yk − (k − 1)y∗)+(n−1)·f
(

(k − 1)y∗ + yk+1 + · · ·+ yn

n− 1

)

It follows that in the original inequality, we may assume that x1 = · · · = xn−1 = x and
xn = x1−n. For convenience, define ` = n− 1. We now have

`√
1 + 2`+1

`2
x

+
1√

1 + 2`+1
`2

x−`

≤ `

⇐⇒ g(x) =
`√

`2 + (2` + 1)x
+

1√
`2 + (2` + 1)x−`

≤ 1

Evidently g(1) = 1 and limx→0+ g(x) = 1 (∗ ∗ ∗). Now consider

g′(x) =
`(2` + 1)

2
·
(

−1

(`2 + (2` + 1)x)3/2
+

x−`−1

(`2 + (2` + 1)x−`)3/2

)

In light of (∗ ∗ ∗), it would suffice to show that g′(x) ≤ 0 for x ≥ 1 and that there
exists some r ∈ (0, 1] such that g′(x) ≤ 0 for 0 < x ≤ r and g′(x) ≥ 0 for r ≤ x ≤ 1.
Writing x = y3, we have

g′(x) < 0

⇐⇒ −1

(`2 + (2` + 1)x)3/2
+

x−`−1

(`2 + (2` + 1)x−`)3/2
< 0

⇐⇒ 1(
x

2`+2
3 (`2 + (2` + 1)x−`)

)3/2
<

1

(`2 + (2` + 1)x)3/2

⇐⇒ y2`+2
(
`2 + (2` + 1)y−3`

)
> `2 + (2` + 1)y3

⇐⇒ (
y5`+2 − y3`

)
`2 − (

y3`+3 − y2`+2
)
(2` + 1) > 0

⇐⇒ y2`+2
(
y`+1 − 1

) (
y`−2

(
y`+1 + 1

)
`2 − (2` + 1)

)
> 0 (∗ ∗ ∗ ∗)

Since ` ≥ 2, 2`2 ≥ 2` + 1, and it is clear that there exists r ≤ 1 such that (∗ ∗ ∗ ∗)
holds iff y ∈ (0, r) ∪ (1,∞), or equivalently x ∈ (0, r3) ∪ (1,∞), as desired.
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44. (Vascile Cartoaje) For any a, b, c, d > 0 we have

2(a3 + 1)(b3 + 1)(c3 + 1)(d3 + 1) ≥ (1 + abcd)(1 + a2)(1 + b2)(1 + c2)(1 + d2)

Solution. By Cauchy’s inequality,

a3 + 1 =
√

(a3 + 1)(a + 1)(a2 − a + 1) ≥ (a2 + 1)
√

a2 − a + 1

so it would suffice to prove that

2
√

(a2 − a + 1)(b2 − b + 1)(c2 − c + 1)(d2 − d + 1) ≥ 1 + abcd (∗)

Now,

(a2 − a + 1)(b2 − b + 1) ≥ a2b2 − ab + 1

⇐⇒ a2 + 2ab + b2 − a− b− a2b− ab2 ≥ 0

⇐⇒ (a + b)(a + b− 1− ab) = −(a + b)(a− 1)(b− 1) ≥ 0

Thus, we may assume that a, b, c, d are on the same side of 1. Moreover, if we divide
both sides of (*) by abcd and substitute x = 1/a, y = 1/b, z = 1/c, w = 1/d, we arrive
at

2
√

(a2 − a + 1)(b2 − b + 1)(c2 − c + 1)(d2 − d + 1) ≥ 1 + abcd

⇐⇒ 2
√

(x2 − x + 1)(y2 − y + 1)(z2 − z + 1)(w2 − w + 1) ≥ 1 + xyzw,

so we may assume 0 < a, b, c, d ≤ 1. Furthermore, since a2 − a + 1 = (a − 1
2
)2 + 3/4,

if a < 1/2 we may exchange a with a′ = 1− a > 1/2. Therefore, we may assume that
1/2 ≤ a, b, c, d ≤ 1. Finally, consider the function f(x) = ln (g(x)), where g(x) = e2x−
ex+1. We have f ′(x) = g′(x)/g(x) and f ′′(x) = g′′(x)g(x)−(g′(x))2

(g(x))2
. Since g′(x) = 2e2x−ex

and g′′(x) = 4e2x − ex, we have g′′(x)g(x) − (g′(x))2 = −ex(e2x − 4ex + 1). It follows
that f ′′(x) ≥ 0 for all x ∈ [ln(1/2), 0]. Therefore, for any x1, x2, x3, x4 ∈ [ln(1/2), 0],
we have

f(x1) + f(x2) + f(x3) + f(x4) ≥ 4f

(
x1 + x2 + x3 + x4

4

)

Exporting this result to a, b, c, d, we have

(a2 − a + 1)(b2 − b + 1)(c2 − c + 1)(d2 − d + 1) ≥ (
√

abcd− 4
√

abcd + 1)4

Letting α = 4
√

abcd, it suffices to prove that 2(α2 − α + 1)2 ≥ 1 + α4. This is evident
however, since the difference of the two sides is α4−4α3 +6α2−4α+1 = (α−1)4 ≥ 0,
as required.
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45. (Vascile Cartoaje) Prove that the sides a, b, c of any triangle obey

3

(
a

b
+

b

c
+

c

a
− 1

)
≥ 2

(
b

a
+

c

b
+

a

c

)

Solution. Clear the denominators and put a = y + z, b = z + x, c = x + y, where
x, y, z > 0, so that we seek

∑
cyc

3a2c− 2a2b− abc =
∑
cyc

x3 + 2x2y − 3xy2 ≥ 0

Without loss of generality, we may assume x = max{x, y, z}. If x = z or y ≥ z, then
∑
cyc

x2y − xy2 = (x− y)(x− z)(y − z) ≥ 0,

and we are done, since
∑

cyc x3 − xy2 ≥ 0 holds trivially by AM-GM. Otherwise,
x > z > y. Writing y = α, z = α + β, x = α + β + γ for α, β, γ > 0 and expanding, we
seek ∑

cyc

x3 + 2x2y − 3xy2 = 2αβ2 + β3 + 2αβγ − β2γ + 2αγ2 + γ3 ≥ 0,

which is obvious since β3+β3+γ3

3
≥ β2γ.

46. (George Tsintifas, Crux Mathematicorum) Prove that for any a, b, c, d > 0 we have the
inequality

(a + b)3(b + c)3(c + d)3(d + a)3 ≥ 16a2b2c2d2(a + b + c + d)4

Solution. Let a + b + c + d = 1, and note that

(a + b)(b + c)(c + d)(d + a)

= a2c2 + b2d2 + 2abcd + abc(a + b + c)

+bcd(b + c + d) + cda(c + d + a) + dab(d + a + b)

= (ac− bd)2 + abc(a + b + c + d) + bcd(b + c + d + a)

+cda(c + d + a + b) + dab(d + a + b + c)

≥ abc + bcd + cda + dab (∗)
On the other hand, Newton’s inequality gives

(
abc + bcd + cda + dab

4

)2

≥
(

ab + ac + ad + bc + bd + cd

6

)
(abcd)

≥
√(

a + b + c + d

4

)(
abc + bcd + cda + dab

4

)
(abcd)

=⇒ (abc + bcd + cda + dab)3 ≥ 16a2b2c2d2(a + b + c + d) (∗∗)
The desired is a direct consequence of (*) and (**).

36



47. (Vietnam 2002) Prove that for any reals x, y, z such that x2 + y2 + z2 = 9,

2(x + y + z)− xyz ≤ 10

Solution. Let x2 ≥ y2 ≥ z2 so that x2 ≥ 3 and 6 ≥ y2 +z2 ≥ 2yz. Cauchy’s inequality
gives

(2(x + y + z)− xyz)2 = (2(y + z) + x(2− yz))2

≤ (
(y + z)2 + x2

) (
4 + (2− yz)2

)
= (2yz + 9)(y2z2 − 4yz + 8)

Letting α = yz, it would suffice to prove that 100 ≥ (2α+9)(α2−4α+8), but we have

100− (2α + 9)(α2 − 4α + 8) = −2α3 − α2 + 20α + 28 = (α + 2)2(7− 2α) ≥ 0,

since 2α ≤ 6, as desired. For equality we require yz = −2 and x2 = (2(y + z))2 =
20− 4x2 Thus, x2 = 4 and y + z = ±1, which lead to x = 2, y = 2, z = −1.

48. (MOP 2003) For n ≥ 2 a fixed positive integer, let x1, . . . , xn be positive reals such
that

x1 + x2 + · · ·+ xn =
1

x1

+
1

x2

+ · · ·+ 1

xn

Prove that
1

n− 1 + x1

+
1

n− 1 + x2

+ · · ·+ 1

n− 1 + xn

≤ 1

Solution. We will prove the contrapositive. (We are motivated to do this for two
good reasons: 1) it is usually difficult the show that the sum of some reciprocals is
bounded above, and 2) the given relation in its current form is an abomination.) Take
yi = 1

n−1+xi
, and for the sake of contradiction assume y1 + · · · + yn > 1. Since the yi

are too large, the xi are too small and we shall prove 1
x1

+ · · · + 1
xn

> x1 + · · · + xn.
Since xiyi = 1− (n− 1)yi, we have

(n− 1)yi > (n− 1)

(
yi + 1−

n∑
j=1

yj

)

= (n− 1)yi − 1 +
n∑

j=1

(1− (n− 1)yj)

= −xiyi +
n∑

j=1

xjyj (∗)

=⇒ n− 1

xi

> −1 +
n∑

j=1

xjyj

xiyi

(∗∗)
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Summing (**) over i,

(n− 1)

(
1

x1

+ · · ·+ 1

xn

)
>

n∑
i=1

xiyi

((
n∑

j=1

1

xjyj

)
− 1

xiyi

)

But by Cauchy and (*), we have
(

n∑
j=1

1

xjyj

)
− 1

xiyi

≥ (n− 1)2

(∑n
j=1 xjyj

)
− xiyi

>
(n− 1)2

(n− 1)yi

=
n− 1

yi

Hence,

(n− 1)

(
1

x1

+ · · ·+ 1

xn

)
>

n∑
i=1

xiyi

(
n− 1

yi

)
= (n− 1)(x1 + · · ·+ xn)

as desired.

49. (Taiwan 2002) Show that for all positive a, b, c, d ≤ k, we have

a4 + b4 + c4 + d4

(2k − a)4 + (2k − b)4 + (2k − c)4 + (2k − d)4
≥ abcd

(2k − a)(2k − b)(2k − c)(2k − d)

Solution. Without loss of generality, suppose that a ≥ b ≥ c ≥ d. The desired is
equivalent to

(a2 − b2)2 + (c2 − d2)2 + 2(a2b2 + c2d2)

abcd

≥ 1

(2k − a)(2k − b)(2k − c)(2k − d)
·
((

(2k − a)2 − (2k − b)2
)2

+
(
2k − c)2 + (2k − d)2

)2
+ 2

(
(2k − a)2(2k − b)2 + (2k − c)2(2k − d)2

))

We will realize this equivalent inequality as a sum of three simpler inequalities. We
have

(a2 − b2)
2

abcd
≥ ((2k − a)2 − (2k − b)2)

2

(2k − a)(2k − b)(2k − c)(2k − d)
(∗)

⇐= (a− b)2
[
(a + b)2(2k − a)(2k − b)

] ≥ (a− b)2
[
(4k − a− b)2ab

]

⇐=

(
a + b

2

)2

(2k − a)(2k − b) ≥
(

2k − a + b

2

)2

ab

(
a + b

2

)2
((

2k − a + b

2

)2

−
(

a− b

2

)2
)

≥
(

2k − a + b

2

)2
((

a + b

2

)2

−
(

a− b

2

)2
)

((
2k − a + b

2

)2

−
(

a + b

2

)2
) (

a− b

2

)2

≥ 0
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The two back-implications are consequences of 0 < c, d ≤ k and division by (a − b)2,
respectively. As a consequence of a, b ≤ k, it is evident that the last line holds, thus
validating our inequality (∗). Substituting c and d for a and b shows that the related
inequality

(c2 − d2)2

abcd
≥ ((2k − c)2 − (2k − d)2)

2

(2k − a)(2k − b)(2k − c)(2k − d)
(∗∗)

holds as well.

We now verify our third inequality. Writing f(x) = x+1/x, we have that f(x) = f(1/x)
and that f(x) is increasing for x ≥ 1. Thus,

2 ((2k − a)2(2k − b)2 + (2k − c)2(2k − d)2)

(2k − a)(2k − b)(2k − c)(2k − d)
≤ 2(a2b2 + c2d2)

abcd
(∗ ∗ ∗)

⇐⇒ f

(
ab

cd

)
≥ f

(
(2k − c)(2k − d)

(2k − a)(2k − b)

)

⇐⇒ a(2k − a)

c(2k − c)
· b(2k − b)

d(2k − d)
≥ 1

⇐⇒
(

k2 − (k − a)2

k2 − (k − c)2

)
·
(

k2 − (k − b)2

k2 − (k − d)2

)
≥ 1

It follows that (∗ ∗ ∗) holds as a consequence of k ≥ a ≥ b ≥ c ≥ d > 0, and that the
desired inequality is realized by adding the corresponding sides of (∗), (∗∗), and (∗∗∗).

50. (Reid Barton, IMO Shortlist 03/A6.) Let n ≥ 2 be a positive integer and x1, x2, . . . , xn,
y1, y2, . . . , yn a sequence of 2n positive reals. Suppose z2, z3, . . . , z2n is such that z2

i+j ≥
xiyj for all i, j ∈ {1, . . . , n}. Let M = max{z2, z3, . . . , z2n}. Prove that

(
M + z2 + z3 + · · ·+ z2n

2n

)2

≥
(

x1 + · · ·+ xn

n

) (
y1 + · · ·+ yn

n

)

Reid’s official solution. Let max(x1, . . . , xn) = max(y1, . . . , yn) = 1. (We can
do this by factoring X from every xi, Y from every yj, and

√
XY from every zi+j

without changing the sign of the inequality.) We will prove M + z2 + · · · + z2n ≥
x1 + x2 + · · ·+ xn + y1 + y2 + · · ·+ yn, after which the desired follows by AM-GM. We
will show that the number of terms on the left which are greater than r is at least as
large as the number of terms on the right which are greater than r, for all r ≥ 0.

For r ≥ 1, the claim is obvious, since all terms on the right are at most 1. Now take
r < 1. Let A and B denote the set of i for which xi > r and the set of j for which
yj > r respectively, and write a = |A|, b = |B|. Evidently, from our scaling, a, b ≥ 1.
Now, xi > r and yj > r implies zi+j ≥ √

xiyj ≥ r. Hence, if C is the set of k for
which zk > r, we have |C| ≥ |A + B|, where the set addition is defined by the set
of possible values if we take an element of A and add it to an element of B. How-
ever, |A + B| ≥ |A|+ |B| − 1, since if A and B consist of the values p1 < · · · < pa and
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q1 < · · · < qb respectively we have all of the values p1+q1 < . . . < pa+q1 < · · · < pa+qb

in A + B. Hence, |C| ≥ a + b − 1. Since |C| ≥ 1, there is some zk > r, and hence,
M > r. Therefore, the left side of the inequality in question has at least a + b terms
which exceed r, as desired. ¥

The most difficult part of this problem is figuring out what can be done with the
large number of givens, especially the mysterious M . Scaling allowed us to introduce
some degree of control and, with audacity, a profoundly clever idea. As it turned
out, the inequality was no sharper than simple AM-GM! It is my opinion that it is
highly unlikely that a problem as staggeringly pernicious as this one will appear on an
Olympiad - at least in the foreseeable future. Nevertheless, I have included it here for
the purpose of illustrating just how unusual and creative a solution can be.

3 Problems

1. Show that for all positive reals a, b, c,

3a2 + 3b2 + 3c2 ≥ (a + b + c)2

2. (MOP 01?) Show that for positive reals a, b, c,

a2

(a + b)(a + c)
+

b2

(b + c)(b + a)
+

c2

(c + a)(c + b)
≥ 3

4

3. (MOP 04) Show that for all positive reals a, b, c,

(
a + 2b

a + 2c

)3

+

(
b + 2c

b + 2a

)3

+

(
c + 2a

c + 2b

)3

≥ 3

4. (MOP) Show that if k is a positive integer and a1, a2, . . . , an are positive reals which
sum to 1, then

n∏
i=1

1− ak
i

ak
i

≥ (
nk − 1

)n

5. Let a1, a2, . . . , an be nonnegative reals with a sum of 1. Prove that

a1a2 + a2a3 + · · ·+ an−1an ≤ 1

4

6. (Ukraine 01) Let a, b, c, x, y, z be nonnegative reals such that x+ y + z = 1. Show that

ax + by + cz + 2
√

(ab + bc + ca)(xy + yz + zx) ≤ a + b + c
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7. Let n > 1 be a positive integer and a1, a2, . . . , an positive reals such that a1a2 . . . an = 1.
Show that

1

1 + a1

+ · · ·+ 1

1 + an

≤ a1 + · · ·+ an + n

4

8. (Aaron Pixton) Let a, b, c be positive reals with product 1. Show that

5 +
a

b
+

b

c
+

c

a
≥ (1 + a)(1 + b)(1 + c)

9. (Valentin Vornicu13) Let a, b, c, x, y, z be arbitrary reals such that a ≥ b ≥ c and either
x ≥ y ≥ z or x ≤ y ≤ z. Let f : R→ R+

0 be either monotonic or convex, and let k be
a positive integer. Prove that

f(x)(a− b)k(a− c)k + f(y)(b− c)k(b− a)k + f(z)(c− a)k(c− b)k ≥ 0

10. (IMO 01/2) Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1

11. (Vasile Cirtoaje) Show that for positive reals a, b, c,

a3

(2a2 + b2)(2a2 + c2)
+

b3

(2b2 + c2)(2b2 + a2)
+

c3

(2c2 + a2)(2c2 + b2)
≤ 1

a + b + c

12. (USAMO 04/5) Let a, b, c be positive reals. Prove that
(
a5 − a2 + 3

) (
b5 − b2 + 3

) (
c5 − c2 + 3

) ≥ (a + b + c)3

13. (Titu Andreescu) Show that for all nonzero reals a, b, c,

a2

b2
+

b2

c2
+

c2

a2
≥ a

c
+

c

b
+

b

a

14. (Darij Grinberg) Show that for positive reals a, b, c,

b2 + c2 − a2

a(b + c)
+

c2 + a2 − b2

b(c + a)
+

a2 + b2 − c2

c(a + b)
≥ 3

2

15. (IMO 96 Shortlist) Let a, b, c be positive reals with abc = 1. Show that

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1

13This improvement is more widely known than the other one in this packet, and is published in his book,
Olimpiada de Matematica... de la provocare la experienta, GIL Publishing House, Zalau, Romania. (In
English, “The Math Olympiad... from challenge to experience.”)
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16. Let a, b, c be positive reals such that a + b + c = 1. Prove that

√
ab + c +

√
bc + a +

√
ca + b ≥ 1 +

√
ab +

√
bc +

√
ca

17. (IMO 00/2) Positive reals a, b, c have product 1. Prove that

(
a− 1 +

1

b

) (
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1

18. (APMO 2005/2) Let a, b, c be positive reals with abc = 8. Prove that

a2

√
(a3 + 1) (b3 + 1)

+
b2

√
(b3 + 1) (c3 + 1)

+
c2

√
(c3 + 1) (a3 + 1)

≥ 4

3

19. Show that for all positive reals a, b, c,

a3

b2 − bc + c2
+

b3

c2 − ca + a2
+

c3

a2 − ab + b2
≥ a + b + c

20. (USAMO 97/5) Prove that for all positive reals a, b, c,

1

a3 + b3 + abc
+

1

b3 + c3 + abc
+

1

c3 + a3 + abc
≤ 1

abc

21. (Moldova 1999) Show that for all positive reals a, b, c,

ab

c(c + a)
+

bc

a(a + b)
+

ca

b(b + c)
≥ a

c + a
+

b

a + b
+

c

b + c

22. (Tuymaada 2000) Prove that for all reals 0 < x1, . . . , xn ≤ 1
2
,

(
n

x1 + · · ·+ xn

− 1

)n

≤
n∏

i=1

(
1

xi

− 1

)

23. (Mathlinks Lore) Show that for all positive reals a, b, c, d with abcd = 1, and k ≥ 2,

1

(1 + a)k
+

1

(1 + b)k
+

1

(1 + c)k
+

1

(1 + d)k
≥ 22−k

24. (Tiks) Show that for all reals a, b, c > 0,

a2

2a + b)(2a + c)
+

b2

(2b + c)(2b + a)
+

c2

(2c + a)(2c + b)
≤ 1

3
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25. (Hyun Soo Kim) Let a, b, c be positive reals with product not less than one. Prove that

1

a + b2005 + c2005
+

1

b + c2005 + a2005
+

1

c + a2005 + b2005
≤ 1

26. (IMO 05/3) Prove that for all positive a, b, c with product at least 1,

a5 − a2

a5 + b2 + c2
+

b5 − b2

b5 + c2 + a2
+

c5 − c2

c5 + a2 + b2
≥ 0

27. (Mildorf) Let a, b, c, k be positive reals. Determine a simple, necessary and sufficient
condition for the following inequality to hold:

(a + b + c)k
(
akbk + bkck + ckak

) ≤ (ab + bc + ca)k(ak + bk + ck)

28. Let a, b, c be reals with a + b + c = 1 and a, b, c ≥ −3
4
. Prove that

a

a2 + 1
+

b

b2 + 1
+

c

c2 + 1
≤ 9

10

29. (Mildorf) Show that for all positive reals a, b, c,

3
√

4a3 + 4b3 +
3
√

4b3 + 4c3 +
3
√

4c3 + 4a3 ≤ 4a2

a + b
+

4b2

b + c
+

4c2

c + a

30. Let a, b, c, x, y, z be real numbers such that

(a + b + c)(x + y + z) = 3, (a2 + b2 + c2)(x2 + y2 + z2) = 4

Prove that
ax + by + cz ≥ 0

31. (Po-Ru Loh) Let a, b, c be reals with a, b, c > 1 such that

1

a2 − 1
+

1

b2 − 1
+

1

c2 − 1
= 1

Prove that
1

a + 1
+

1

b + 1
+

1

c + 1
≤ 1

32. (Weighao Wu) Prove that
(sin x)sin x < (cos x)cos x

for all real numbers 0 < x < π
4
.
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33. (Michael Rozenberg) Show that for all positive reals a, b, c,

a2

b + c
+

b2

c + a
+

c2

a + b
≥ 3

2
· a3 + b3 + c3

a2 + b2 + c2

34. (Hungktn) Prove that for all positive reals a, b, c,

a2 + b2 + c2

ab + bc + ca
+

8abc

(a + b)(b + c)(c + a)
≥ 2

35. (Mock IMO 05/2) Let a, b, c be positive reals. Show that

1 <
a√

a2 + b2
+

b√
b2 + c2

+
c√

c2 + a2
≤ 3

√
2

2

36. (Gabriel Dospinescu) Let n ≥ 2 be a positive integer. Show that for all positive reals
a1, a2, . . . , an with a1a2 . . . an = 1,

√
a2

1 + 1

2
+ · · ·+

√
a2

n + 1

2
≤ a1 + · · ·+ an

37. Let n ≥ 2 be a positive integer, and let k ≥ n−1
n

be a real number. Show that for all
positive reals a1, a2, . . . , an,

(
(n− 1)a1

a2 + · · ·+ an

)k

+

(
(n− 1)a2

a3 + · · ·+ an + a1

)k

+ · · ·+
(

(n− 1)an

a1 + · · ·+ an−1

)k

≥ n

38. Show that for reals x, y, z which are not all positive,

16

9

(
x2 − x + 1

) (
y2 − y + 1

) (
z2 − z + 1

) ≥ (xyz)2 − xyz + 1

39. (Mildorf) Let a, b, c be arbitrary reals such that a ≥ b ≥ c, and let x, y, z be nonnegative
reals with x + z ≥ y. Prove that

x2(a− b)(a− c) + y2(b− c)(b− a) + z2(c− a)(c− b) ≥ 0

and determine where equality holds.

40. (IMO 06/3) Determine the least real number M such that for all reals a, b, c,

∣∣a3b + b3c + c3a− a3c− b3a− c3b
∣∣ ≤ M · (a2 + b2 + c2

)2

41. (Kiran Kedlaya) Show that for all nonnegative a1, a2, . . . , an,

a1 +
√

a1a2 + · · ·+ n
√

a1 · · · an

n
≤ n

√
a1 · a1 + a2

2
· · · a1 + · · ·+ an

n
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42. (Vasile Cirtoaje) Prove that for all positive reals a, b, c such that a + b + c = 3,

a

ab + 1
+

b

bc + 1
+

c

ca + 1
≥ 3

2

43. (Gabriel Dospinescu) Prove that ∀a, b, c, x, y, z ∈ R+| xy + yz + zx = 3,

a(y + z)

b + c
+

b(z + x)

c + a
+

c(x + y)

a + b
≥ 3

44. (Mildorf) Let a, b, c be non-negative reals. Show that for all real k,

∑
cyc

max(ak, bk)(a− b)2

2
≥

∑
cyc

ak(a− b)(a− c) ≥
∑
cyc

min(ak, bk)(a− b)2

2

(where a, b, c 6= 0 if k ≤ 0) and determine where equality holds for k > 0, k = 0, and
k < 0 respectively.

45. (Vasile Cirtoaje) Let a, b, c, k be positive reals. Prove that

ab + (k − 3)bc + ca

(b− c)2 + kbc
+

bc + (k − 3)ca + ab

(c− a)2 + kca
+

ca + (k − 3)ab + bc

(a− b)2 + kab
≥ 3(k − 1)

k

46. (Darij Grinberg and Vascile Cirtoaje) Show that for positive reals a, b, c, d,

1

a2 + ab
+

1

b2 + bc
+

1

c2 + cd
+

1

d2 + da
≥ 2√

abcd

47. (Vasile Cirtoaje; inspired by the next problem) Show the for all positive reals a, b, c,

3a2 + ab

(a + b)2
+

3b2 + bc

(b + c)2
+

3c2 + ca

(c + a)2
≥ 3

48. (Vasile Cirtoaje; inspired by the next problem) Show that for all positive reals a, b, c,

3a2 − 2ab− b2

a2 + b2
+

3b2 − 2bc− c2

b2 + c2
+

3c2 − 2ca− a2

c2 + a2
≥ 0

49. (Mildorf) Show that for all positive reals a, b, c,

3a2 − 2ab− b2

3a2 + 2ab + 3b2
+

3b2 − 2bc− c2

3b2 + 2bc + 3c2
+

3c2 − 2ca− a2

3c2 + 2ca + 3a2
≥ 0

50. (Vasile Cirtoaje) Show that for real numbers a, b, c,

4

(∑
cyc

a2b2 − abc
∑
cyc

a

)(∑
cyc

a4 −
∑
cyc

a2b2

)
≥ 3

(∑
cyc

a3b− abc
∑
cyc

a

)2
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